
On Equilibrium Existence in a Finite-Agent, Multi-Asset Noisy

Rational Expectations Economy

Ronaldo Carpio∗1 and Meixin Guo†2

1School of Banking & Finance, University of International Business & Economics

2Department of Economics, Tsinghua University

July 25, 2018

Abstract

In this paper we introduce a novel method of proving existence of rational expectations equilibria

(REE) in multi-dimensional CARA-Gaussian environments. Our approach is to focus on the set
of parameters characterizing agents’ beliefs. We show that this set is convex and compact; we then
construct a continuous mapping from agents’ initial beliefs, to optimal behavior given these beliefs,
to equilibrium behavior; and then finally, to agents’ updated beliefs after observing equilibrium.
We appeal to Brouwer’s fixed point theorem to prove that a fixed point exists, which must be a
REE. We use this method to to prove existence of REE in a finite-agent version of the model of
Admati (1985), which is a multi-asset noisy REE asset pricing model with dispersed information.
Our method can prove existence in models that are not currently handled by the literature; it also
can be applied to any multi-dimensional REE model with Gaussian uncertainty and behavior that
is linear in agents’ information.
Keywords: asymmetric information, noisy rational expectations, multiple assets, equilibrium exis-
tence
JEL classification: C62, G12

∗Corresponding author. 9th Floor, Boxue Bldg., 10 Huixindongjie, Beijing, 100029, China. Email: rncarpio@yahoo.com.

Tel: +86 18811577940, Fax: +86 1064495059.
†Department of Economics, School of Economics and Management, Tsinghua University, Beijing, China, 100084. Email:

guomx@sem.tsinghua.edu.cn. Tel: (8610) 6279-5839.



1 Introduction

In this paper we introduce a novel method of proving existence of rational expectations equilibria

(REE) in multi-dimensional CARA-Gaussian environments, and use it to prove existence of REE in

a finite-agent version of the model of Admati (1985), which is a multi-asset noisy REE model with

dispersed information among many agents.

In such a model, agents’ Gaussian beliefs are characterized by a mean vector and a positive semidefinite

covariance matrix. The covariance matrix encodes all linear relationships between random variables; if

the covariance matrix can be determined, then it, together with the law of iterated expectations, will pin

down the mean vector under rational expectations. First, we show that the set of valid belief covariance

matrices is convex and compact. Then, we construct a mapping from agents’ initial beliefs, to optimal

behavior, to equilibrium; and then to agents’ updated beliefs, after observing equilibrium. We show

that this mapping is continuous and takes the set of covariance matrices into itself; by Brouwer’s fixed

point theorem, a fixed point exists, which must be a REE. Two properties of Gaussians are key: first,

the set of positive semidefinite matrices is a convex subset of Euclidean space. Second, the operations

involved in the mapping (conditioning on a subset of variables, and taking a linear transformation of

variables) preserves the Gaussian property. Under CARA (and mean-variance) utility, each agent’s

optimal demand is linear in their information plus prices, which implies that equilibrium prices are

also linear in all agents’ information. This guarantees that agents’ updated beliefs remain Gaussian,

and thus the mapping takes a Gaussian to another Gaussian.

This paper fills a gap in the noisy REE literature for models with dispersed information. Existence

of REE in the finite-agent, one-risky-asset case was proven in Hellwig (1980) (see Lemma 3.1) under

Gaussian uncertainty, and in Breon-Drish (2015) (see Lemma A15) under exponential family uncer-

tainty. These proofs applied Brouwer’s fixed point theorem to one-dimensional intervals. However, as

noted in Admati (1985) (see the discussion preceding footnote 8), this approach does not carry over

to the multi-asset case, since it depends on properties of scalars which do not carry over to matrices.

Furthermore, while the proofs mentioned above use constructions specific to the models in question,

our method is more general, and can be applied to any model where agents have Gaussian beliefs. To

numerically solve for the REE, well-known iterative algorithms such as Mann iteration can be used

to compute a fixed point of the mapping. Our approach relies heavily on the properties of positive
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semidefinite matrices. While this increases the technical burden on the reader, we believe that this is

the natural way to extend results from one-dimensional Gaussian models to higher dimensions.

The papers mentioned above also consider a model with an infinite number of agents, and are able to

prove existence of a linear REE by deriving the coefficients of the equilibrium price function in closed

form. The difference between finite and infinite-agent models may seem like a technical detail, but it

can have important consequences for behavior. In infinite-agent noisy REE models, it is assumed that

each agent receives an i.i.d. signal correlated with the unobserved asset payoff, and that a law of large

numbers can be applied when computing the realized average signal across agents (e.g. Eqn. 16 in

Admati (1985)). This allows modelers to equate the realized average belief mean across agents with

the expectation of the belief mean distribution, which makes it possible to find an analytic solution.

However, this assumption has two effects: first, the infinite i.i.d signals (and therefore the market

price) contain enough information to perfectly reveal the asset payoff, removing the incentive to trade.

In order to make prices only partially revealing, an additional source of noise must be added, typically

to asset supply, which is commonly interpreted as ”noise traders”. In this paper, we retain the noisy

supply assumption to facilitate the proof; however, in a finite-agent setting, this assumption is not

necessary to prevent perfect revelation of payoffs, since even an omniscient agent who observes all

private signals will retain some posterior uncertainty. Second, the average belief mean across agents is

a constant, a.s. This means that there cannot be any meaningful effects that depend on the realized

distribution of belief means among agents after they observe their private signals. Carpio and Guo

(2018) gives an example of one such effect, the ”diversification discount”, which is the phenomenon

that a conglomerate firm with multiple business segments seems to receive a lower market value than

a similar collection of single-segment firms1. In that paper we show that under the infinite-agent

assumption, a discount exists a.s., but with finite agents, a discount or a premium may exist. Since

diversification premia are sometimes observed empirically (Villalonga 2004), a theory that only allows

a discount would seem to suffer a drawback.

1.1 Related Literature

The seminal papers of Grossman and Stiglitz (1980) and Hellwig (1980) presented models of financial

markets with a noisy rational expectations equilibrium. In these models, agents trade assets with

1The mechanism in this paper is essentially similar to the ”trade-restriction” channel in Dai (2018)

2



unobserved Gaussian payoffs; ”informed” agents are endowed with a private signal that reveals some

information about the true payoff. Prices not only clear the market, but also allow agents to infer

the demands (and hence the private signals) of other agents. In Grossman and Stiglitz (1980), there

are two types of agents with a ”hierarchical” information structure, in that the information set of the

”informed” investors contains everything in the information set of the ”uninformed” investors. This

simplifies the problem, since the market price can be ignored when determining the informed agents’

asset holdings. Hellwig (1980) introduced an economy with a single risky asset and many agents with

a ”dispersed” or ”differential” information structure, where each agent has some information that no

other agent knows; this paper noted the ”schizophrenic” nature of agents in a finite market who are

aware of the covariance between prices and their own signals and actions, but behave as price-takers.

Admati (1985) extended Hellwig (1980) to include an arbitrary number of risky assets; Breon-Drish

(2015) extended both Grossman and Stiglitz (1980) and Hellwig (1980) by allowing uncertainty to

follow a one-dimensional exponential family, which includes the Gaussian distribution as a special

case.

This paper is related to the literature studying existence and uniqueness of equilibria in noisy rational

expectations models. Pálvölgyi and Venter (2015a) show that in the model of Hellwig (1980) with one

risky asset and infinite agents, there is a unique linear equilibrium and many discontinuous equilibria.

Pálvölgyi and Venter (2015b) show that in a multi-asset model with infinite agents and a hierarchical

information structure, the linear equilibrium is unique (if it exists). Chabakauri, Yuan, and Zachariadis

(2016) model a contingent-claims market with a finite but arbitrary number of states, and study

complete and incomplete market settings with asymmetric information. The noisy REE model has

also been extended to a dynamic setting. He and Wang (1995) study a finite-horizon model with

differential information and infinite agents. Zhou (1998) studies a special case of dispersed information

with finite agents, in which there are two agents and two risky assets i “ 1, 2, and each agent i is

perfectly informed about one asset, but uninformed about the other.

The remainder of the paper is organized as follows. Section 2 presents mathematical preliminaries

and standard results on positive definite matrices and Gaussian distributions. Section 3 presents a

finite-agent version of the multi-asset model of Admati (1985). Section 3.1 defines the domain and

continuous mapping and shows that the conditions for Brouwer’s theorem apply. Section 5 concludes.
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2 Preliminaries

Let Sn`pSn``q denote the set of nˆn-dimensional, real-valued, symmetric, positive semidefinite (positive

definite) matrices. Sn` is a closed, unbounded, convex cone in Rn2

whose boundary rays are the rank-1

matrices.

The following results are well known.

Definition 2.1 (Loewner partial order). For A,B P Sn`, A ěL B whenever pA ´ Bq P Sn`, and

A ąL B whenever pA ´ Bq P Sn``. Let A ěL 0 pA ąL 0q denote that A is positive semidefinite

(positive definite).

The Loewner ordering has the following statistical interpretation (Horn (1990), p.141): suppose X̃, Ỹ

are Rn-valued random variables, with V arpX̃q “ A and V arpỸ q “ B. Then A ěL pąLq B iff

for any nonzero c P Rn, V arpc ¨ X̃q ě pąq V arpc ¨ Ỹ q. Furthermore, if X̃, Ỹ are Gaussian, then

V arpX̃|Ỹ q ďL V arpX̃q (see Lemma 6.5), i.e. uncertainty must weakly decrease after conditioning on

an event. Thus, it is the natural counterpart to the standard ordering of the reals when dealing with

variances of many variables. We can treat ďL much like ď when defining convex regions: for fixed

A,B P Sn`, the set tX P Sn`|A ďL X ďL Bu is convex and compact. Under the Loewner ordering, we

can also define conditions for concavity and monotoncity, analogous to those for real-valued functions,

that apply to matrix-valued functions.

Lemma 2.1 (Conditional distribution of Gaussians). Suppose X̃, Ỹ are respectively m, n-dimensional

jointly Gaussian random vectors with variance M P Sm`n` , partitioned as

M “

»

—

–

V arpX̃q CovpX̃, Ỹ q

CovpỸ , X̃q V arpỸ q

fi

ffi

fl

“

»

—

–

M11 M12

MT
12 M22

fi

ffi

fl

(2.1)

Then the conditional distribution of X̃ given Ỹ is Gaussian, with mean and variance (Schott (2017),

Example 7.4):

ErX̃|Ỹ s “ ErX̃s `M12M
´
22

´

Ỹ ´ ErỸ s
¯

(2.2)

V arpX̃|Ỹ q “M11 ´M12M
´
22M

T
12 (2.3)

where M´
22 denotes a generalized inverse of M22. If M22 is nonsingular, this is identical to the standard
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matrix inverse.

Corollary 2.1 (Continuity of conditional Gaussian distribution). The mappings M ÑM12M
´1
22 (i.e.

the coefficient of Ỹ in ErX̃|Ỹ s) and M Ñ M11 ´ M12M
´1
22 M

T
12 “ V arpX̃|Ỹ q are continuous over

tM P Sm`n` |M22 P Sn``u.

When dealing with a one-dimensional variance parameter, we frequently want to define a set of possible

variances that is bounded and bounded away from zero; this ensures closedness and boundedness, while

avoiding the degenerate case of a zero variance. The corresponding degeneracy condition for a matrix is

singularity, which occurs if there is perfect collinearity among the set of random variables (equivalently,

the unexplained variance after conditioning some on subset of variables is zero). Later in the paper we

will want to define a closed subset of Sn` for our mapping to operate on; however, this subset cannot

contain a singular matrix, since our mapping will include the matrix inverse, which will be undefined.2

We will refer to a subset of Sn` as being ”bounded” or being ”bounded away from singular” in the

Loewner ordering; the following results give equivalencies for these conditions.

Lemma 2.2 (Bounded positive semidefinite matrices). Suppose A P Sn`. The following statements are

equivalent:

(a) A is bounded in the Loewner order: there exists B P Sn` such that A ďL B.

(b) A is bounded element-wise.

(c) The maximum eigenvalue of A is bounded.

Lemma 2.3 (Positive definite matrices bounded away from singular). Let M “ V arpX̃, Ỹ q, and

suppose M P Sm`n`` and is partitioned as in Lemma 2.1. The following statements are equivalent:

(a) M is bounded away from singular in the Loewner order: there exists B P Sm`n`` such that M ěL B.

(b) The minimum eigenvalue of M is bounded away from zero.

(c) Both V arpX̃|Ỹ q and V arpỸ |X̃q are bounded away from singular in the Loewner order.

Corollary 2.2 (Inverse of bounded matrix is bounded away from singular). If A P Sn``, then A is

bounded iff A´1 is bounded away from singular.

2We could replace the matrix inverse with a pseudoinverse; however, continuity of a pseudoinverse is not guaranteed
at a singular matrix.
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2.1 Convexity and Compactness of a Set of Covariance Matrices with Con-

straints

In order to apply Brouwer’s fixed point theorem, we need to show that the set of covariance matrices

characterizing agents’ beliefs is convex and compact. Here we present a general result for a set of

possible covariance matrices of a Gaussian random vector, subject to two types of constraints: (i)

upper and lower bounds on the joint variance of some subset of variables; (ii) a lower bound on the

conditional variance of some subset of variables, given another subset. As we will see, in Admati’s

model, the set of possible agent beliefs will be defined by constraints of these two types.

Theorem 2.1 (Convexity of set of covariance matrices subject to constraints). Suppose X̃ “ px̃1, ...x̃nq

is an n-dimensional, jointly Gaussian random vector. We impose two types of constraints on V arpX̃q:

(a) Let X̃I “ px̃i1 , ..., x̃iI q denote a subset of X̃ of length I, and let A,B be fixed matrices in SI`.

Suppose we impose a constraint of the form A ďL V arpX̃Iq ďL B. The set of V arpX̃Iq that

satisfies this constraint is a convex, compact subset of SI`. This also implies that each of V arpx̃i1q,

..., V arpx̃iI q is bounded.

(b) Let X̃I “ px̃i1 , ..., x̃iI q, X̃J “ px̃j1 , ..., x̃jJ q denote two disjoint subsets of X̃ of length I and J ,

respectively, and let A,B be fixed matrices such that A P SJ``, B P SI`. Suppose we impose the

following constraints: (i) V arpX̃Jq ěL A ąL 0; (ii) V arpX̃I |X̃Jq ěL B ěL 0. That is, we impose

a fixed lower bound on the conditional variance of X̃I given X̃J ; this requires that V arpX̃Jq be

nonsingular, which is guaranteed by (i). The set of V arpX̃I , X̃Jq that satisfies this constraint is a

closed, convex, and unbounded subset of SI`J`` .

Suppose we impose any number of constraints of type (a) and type (b); then the set of V arpX̃q that

satisfies these constraints is convex and closed. Furthermore, if as a result of conditions of type (a),

each of V arpx̃1q, ...V arpx̃nq is bounded, then it is also bounded.

3 The model: Admati (1985) with finite agents

There are I agents and two periods; agents trade in the first period and consume in the second. Each

agent i “ 1, ..., I invests his initial wealth w0i in a riskless asset and N risky assets. Agent i has
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population mass αi, where αi ą 0 and
ř

i αi “ 1. The riskless rate of return is assumed to be 1. Let

F̃ denote the random vector of risky asset returns. Agent i’s final wealth is

w̃1i “ w0iR`D
T
i pF̃ ´ P̃Rq (3.1)

Di is the vector of holdings of risky assets, and P̃ is the vector of market prices, also a random variable.

Each agent i has exponential utility uipwq “ ´ expp´w{ρiq. At the beginning of period 1, each agent

i receives a private signal Ỹi “ F̃ ` ε̃i, where ε̃i is i.i.d. Gaussian. Let DipP̃ , Ỹiq denote the demand

vector of agent i induced by maximizing expected utility. Total asset supply is assumed to be a random

variable Z̃.

We assume that pF̃ , Z̃, ε̃1, ..., ε̃Iq is jointly Gaussian, with mean pF̄ , Z̄, 0, ..., 0q and block-diagonal

variance matrix diagpV,U, S1, ..., SIq. All off-diagonal blocks are zero. V, S1, ..., SI , U are positive

definite. Under rational expectations, each agent i is assumed to know the true joint distribution of

pF̃ , Ỹi, P̃ q. We will seek a linear rational expectations equilibrium, in which price is a linear function

of private signals and asset supply:

P̃ “ A0 `
ÿ

i

A1iỸi `A2Z̃ (3.2)

Note the difference between this and the price function in the infinite-agent model P̃ “ A0`A1F̃´A2Z̃

(Eqn 6 in Admati (1985)), in which the individual signals received by agents do not appear, only the

asset payoff F̃ . The linear form of the price function implies that pF̃ , P̃ , Z̃, Ỹ1, ..., ỸIq are jointly

Gaussian. Therefore, the conditional distribution of pF̃ |Ỹi, P̃ q is also Gaussian; let pµ̃i, Viq denote its

mean and variance, which also specifies the beliefs of agent i. Then µ̃i “ ErF̃ |Ỹi, P̃ s will be a linear

function of Ỹi and P̃ ; let B0i, B1i, B2i denote its coefficients:

µ̃i “ ErF̃ |Ỹi, P̃ s “ B0i `B1iỸi `B2iP̃ (3.3)

After standard manipulations, agent i’s demand vector is given by

DipP̃ , Ỹiq “
1

ρi
V ´1
i pµ̃i ´ P̃ q (3.4)
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The market clearing condition is:

ÿ

i

αiDipP̃ , Ỹiq “
ÿ

i

αi
ρi
V ´1
i pµ̃i ´ P̃ q “ Z̃ (3.5)

The equilibrium price vector P̃ must satisfy the condition

P̃ “

˜

ÿ

i

αi
ρi
V ´1
i

¸´1 ˜
ÿ

i

αi
ρi
V ´1
i µ̃i ´ Z̃

¸

(3.6)

Let Wi “
ρi
αi
Vi; this is the ”effective” variance of agent i’s belief, incorporating the agent’s risk tolerance

and population mass. We can rewrite the equilibrium price condition as

P̃ “ p
ÿ

i

W´1
i q´1p

ÿ

i

W´1
i µ̃i ´ Z̃q “ p

ÿ

i

W´1
i q´1p

ÿ

i

W´1
i µ̃iq ´ p

ÿ

i

W´1
i q´1Z̃ (3.7)

The first term in this expression,
`
ř

iW
´1
i

˘´1 `ř

iW
´1
i µ̃i

˘

, is the Bayesian posterior mean that results

from observing I normally distributed signals, where the ith signal is observed to be µ̃i and has a known

variance of Wi. The coefficient of Z̃ in the second term, p
ř

iW
´1
i q´1, is the Bayesian posterior variance.

Thus, we have:

Remark 3.1 (Markets as a Bayesian aggregator of information). In a linear REE, the equilibrium

price is identical to an economy with a representative investor who has ”observed” the beliefs of the I

agents and combined them using Bayesian updating.

Let V denote V arpF̃ |Ỹ1, ..., ỸI , Z̃q = pV ´1`
ř

i S
´1
i q´1, the variance of an agent who has observed all

private signals and the noisy supply. Assuming a linear price equation of the form in Eq. 3.2 holds,

and each agent’s belief variance Vi is V arpF̃ |Ỹi, P̃ q, then Vi must satisfy the following two conditions,

whether in a linear REE or not:

Lemma 3.1 (Boundedness of agent’s belief variance). For each i “ 1, ..., I,

V ďL Vi ďL V. (3.8)

Lemma 3.2 (Variance of price is bounded). There exists some V P P SN`` such that V arpP̃ q ďL V P .

In a linear REE, agents’ belief means must satisfy the following condition.

Lemma 3.3 (Expectation of beliefs and prices). Erµ̃is “ F̄ and P̄ “ ErP̃ s “ F̄ ´
`
ř

iW
´1
i

˘´1
Z̄.
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3.1 Existence of Equilibrium with Finite Agents

First, we describe the mapping from agents’ initial belief variances to their updated belief variances

after equilibrium, and show that it is continuous. Then, we show that given the parameters of the

economy, a convex, compact, and nonempty set exists, such that the mapping takes this set into itself.

3.1.1 Mapping from Initial Beliefs to Updated Beliefs

Let X1
i denote the set tV arpF̃ , Ỹi, P̃ q P S3N

` u subject to the following constraints:

V arpF̃ , Ỹiq “

»

—

–

V V

V T V ` Si

fi

ffi

fl

(3.9)

0 ăL V arpỸi, P̃ q (3.10)

X1
i is convex, unbounded, open, and clearly nonempty. We will show that the mapping from initial

to updated beliefs takes this set into a convex, compact set, which we will use as the belief parameter

set of the agents in the model. Let Qi be any element of Xi; Qi is a possible value for V arpF̃ , Ỹi, P̃ q.

Let T1i denote the mapping that takes Qi to the parameters of the conditional distribution of F̃ |Ỹi, P̃ .

Specifically, T1i : Xi Ñ pRN ˆRNˆN ˆRNˆN ˆSN` q maps Qi to the matrices pB0i, B1i, B2i, Viq, which

are uniquely determined by the conditional Gaussian distribution (Lemma 2.1):

µ̃i “ ErF̃ |Ỹi, P̃ s “ F̄ ` CovpF̃ , pỸi, P̃ qqV ar
´1pỸi, P̃ q

”

Ỹi´Ȳi

P̃´P̄

ı

(3.11)

“ B0i `B1iỸi `B2iP̃ (3.12)

Vi “ V arpF̃ |Ỹi, P̃ q “ V ´ CovpF̃ , pỸi, P̃ qqV ar
´1pỸi, P̃ qCovppỸi, P̃ , F̃ qq (3.13)

Constraint 3.10 guarantees that V arpỸi, P̃ q is nonsingular. By Corollary 2.1, this mapping is con-

tinuous. Plugging µ̃i “ B0i ` B1iỸi ` B2iP̃ for i “ 1, ..., I into the equilibrium price condition 3.7

gives:

P̃ “ p
ÿ

i

W´1
i q´1p

ÿ

i

W´1
i pB0i `B1iỸi `B2iP̃ q ´ Z̃q (3.14)

“ p
ÿ

i

W´1
i q´1p

ÿ

i

W´1
i B0i `

ÿ

i

W´1
i B1iỸi `

ÿ

i

W´1
i B2iP̃ ´ Z̃q (3.15)
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“ p
ÿ

i

W´1
i q´1p

ÿ

i

W´1
i B0i `

ÿ

i

W´1
i B1iỸi ´ Z̃q ` p

ÿ

i

W´1
i q´1p

ÿ

i

W´1
i B2iqP̃ (3.16)

We can recursively expand P̃ on the right-hand side to get

P̃ “ p
8
ÿ

k“0

Θkqp
ÿ

i

W´1
i q´1p

ÿ

i

W´1
i B0i `

ÿ

i

W´1
i B1iỸi ´ Z̃q (3.17)

Θ “ p
ÿ

i

W´1
i q´1p

ÿ

i

W´1
i B2iq (3.18)

We wish to show that the infinite sum
ř8

k“0 Θk converges; we can then write
ř8

k“0 Θk “ pI ´ Θq´1.

Wi and W´1
i are bounded and bounded away from singular, and so is p

ř

iW
´1
i q´1. The coefficient of

Z̃ is ´
ř8

k“0 Θkp
ř

iW
´1
i q´1, thus the variance contributed by the term containing Z̃ to V arpP̃ q is

p

8
ÿ

k“0

Θkqp
ÿ

i

W´1
i q´1Up

ÿ

i

W´1
i q´1p

8
ÿ

k“0

ΘkqT (3.19)

Since Z̃ is independent of the other random components of P̃ (the Ỹi’s), V arpP̃ q can be decomposed

into a sum of the variance of the Z̃ term and the joint variance of the Ỹi terms. By Lemma 3.2 V arpP̃ q

is bounded; therefore the variance of the Z̃ term given in 3.19 must be bounded as well, and
ř8

k“0 Θk

converges. This implies that maxi |λipΘq| ă 1, and we can write
ř8

k“0 Θk “ pI ´ Θq´1. Now we can

compute the coefficients pA0, A11, ..., A1I , A2q of the linear price equation 3.2:

A0 “ pI ´Θq´1p
ÿ

i

W´1
i q´1p

ÿ

i

W´1
i B0iq (3.20)

A1i “ pI ´Θq´1p
ÿ

i

W´1
i q´1pW´1

i B1iq (3.21)

A2 “ ´pI ´Θq´1p
ÿ

i

W´1
i q´1 (3.22)

Finally, given pA0, A11, ..., A1I , A2q, we can compute the updated variance of pF̃ , Ỹi, P̃ q:

V arpF̃ , Ỹi, P̃ q “

»

—

—

—

—

–

V V V p
ř

iA1iq
T

. V ` Si V p
ř

iA1iq
T ` SiA

T
1i

. . p
ř

iA1iqV p
ř

iA1iq
T `

ř

iA1iSiA
T
1i `A2UA

T
2

fi

ffi

ffi

ffi

ffi

fl

(3.23)

Let T2 :
ś

ipRN ˆ RNˆN ˆ RNˆN ˆ SN` q Ñ
ś

i S3N
` denote the mapping that takes the collection of
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pB0i, B1i, B2i, Viq for i “ 1, ..., I to a set of variance matrices R1, ...RI using Eqn 3.23. Let T denote

the mapping T2p
ś

i T1iq.

We can now show that the variance bounds defining our desired belief parameter set exist, though it

may be difficult to actually compute numerical bounds for a given set of parameter values.

Lemma 3.4 (variance bounds on private signal, price, and belief). For any pQ1, ...QIq, where Qi P X
1
i ,

let pQ11, ...Q
1
Iq “ T pQ1, ...QIq. Then for each Q1i, and using V arpF̃ , Ỹi, P̃ q “ Q1i: (i) V arpP̃ q is bounded;

(ii) V arpỸi, P̃ q is bounded away from singular; (iii) V arpF̃ |Ỹi, P̃ q ěL V .

Therefore, given the parameters of the economy, there exist matrices V iY P P S2N
``, V P P SN``, such

that V iY P is a lower bound for V arpỸi, P̃ q, and V P is an upper bound for V arpP̃ q. A nonsingular

lower bound for V arpỸi, P̃ q is necessary to ensure that our mapping, which includes the matrix inverse,

will not encounter a singular matrix. This implies that pỸi, P̃ q cannot be arbitrarily close to perfectly

collinear, or equivalently, the conditional variance of P̃ |Ỹi must be bounded away from singular.

3.1.2 The Set of Agents’ Belief Variances

Let X2
i pV

i
Y P , V P q denote the set tV arpF̃ , Ỹi, P̃ q P S3N

` u subject to the following constraints:

V arpF̃ , Ỹiq “

»

—

–

V V

V T V ` Si

fi

ffi

fl

(3.24)

0 ďL V arpP̃ q ďL V P (3.25)

V iY P ďL V arpỸi, P̃ q (3.26)

V ďL V arpF̃ |Ỹi, P̃ q (3.27)

Lemma 3.5 (Convexity and compactness of agents’ belief variance space). For any V iY P P S2N
``, V P P

SN``, XipV
i
Y P , V P q is closed, convex, and bounded.

Constraint 3.25 ensures boundedness; the 0 ďL V arpP̃ q condition is simply positive semidefiniteness

of V arpP̃ q. Constraint 3.26 ensures that V arpỸi, P̃ q is nonsingular, allowing us to take the matrix

inverse when computing the distribution of pF̃ |Ỹi, P̃ q, while still defining a closed set.

Clearly, X2
i pV

i
Y P , V P q Ă X1

i . Therefore, T is a continuous mapping that takes
ś

iX
2
i pV

i
Y P , V P q

11



to itself.
ś

iX
2
i pV

i
Y P , V P q is convex and compact, since it is the Cartesian product of convex and

compact sets. It is nonempty since it contains at least the element T pQ1, ...QIq where each Qi P X
1
i is

Qi “

»

—

—

—

—

–

V V 0

. V ` Si 0

. . Si

fi

ffi

ffi

ffi

ffi

fl

(3.28)

Since T is continuous, we can apply Brouwer’s fixed point theorem, and a fixed point Q˚ “ pQ˚1 , ...Q
˚
I q

exists, which must be a REE. Once we have Q˚, we can find the equilibrium price function by applying

Eqns 3.12, 3.13, and 3.20 - 3.22.

4 Numerical Example and Multiple Equilibria

Here, we use Mann iteration to find an approximate fixed point of the mapping T . Since T is not

known to be nonexpansive3 (that is, a weakly contractive mapping) everywhere on our domain of

interest, we cannot guarantee that this procedure converges, but in our tests it seems to work well for

a variety of parameters. The source code for this algorithm is available upon request.

Suppose ρ1 “ ρ2 “ 1, I “ N “ 2, S1 “ S2 “ I2, F̃ „ N pr 1
1 s , r

1 0.5
. 1 sq , Z̃ „ N pr 1

1 s , r
1 0
. 1 sq , and

α1 “ α2 “ 0.5. We use the iterative procedure xn`1 “ p1´
1
n qxn `

1
nT pxnq, and stop iterating when

the Euclidean distance between successive iterates is less than 10´6. By using random starting points,

we have numerically found two equilibria (there may be more):

(i)

V arpF̃ , Ỹi, P̃ q “

»

—

—

—

—

—

—

—

—

—

—

—

—

—

—

–

1 0.5 1 0.5 0.597319 0.398735

0.5 1 0.5 1 0.398735 0.597319

1 0.5 2 0.5 0.86262 0.465452

0.5 1 0.5 2 0.465452 0.86262

0.597319 0.398735 0.86262 0.465452 0.680554 0.438109

0.398735 0.597319 0.465452 0.86262 0.438109 0.680554

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

(4.1)

3Note that a mapping T may satisfy the requirement for Brouwer’s theorem that T pXq Ă X for some set X, while
still being expansive on a subset of X.
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µ̃i “

»

—

–

0.295466

0.295466

fi

ffi

fl

`

»

—

–

0.274761 0.0690959

0.0690959 0.274761

fi

ffi

fl

Ỹi `

»

—

–

0.482172 0

0 0.482172

fi

ffi

fl

P̃ (4.2)

Vi “

»

—

–

0.402681 0.101265

0.101265 0.402681

fi

ffi

fl

(4.3)

P̃ “

»

—

–

0.570587

0.570587

fi

ffi

fl

`

»

—

–

0.265301 0.066717

0.066717 0.265301

fi

ffi

fl

pỸ1 ` Ỹ2q ´

»

—

–

0.388817 0.0977786

0.0977786 0.388817

fi

ffi

fl

Z̃ (4.4)

(ii)

V arpF̃ , Ỹi, P̃ q “

»

—

—

—

—

—

—

—

—

—

—

—

—

—

—

–

1 0.5 1 0.5 0.0955325 0.336214

0.5 1 0.5 1 ´0.186054 0.374306

1 0.5 2 0.5 0.221239 0.435588

0.5 1 0.5 2 ´0.341934 0.511773

0.0955325 ´0.186054 0.221239 ´0.341934 0.272793 0.0118418

0.336214 0.374306 0.435588 0.511773 0.0118418 0.309886

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

(4.5)

µ̃i “

»

—

–

0.00948797

´0.0103724

fi

ffi

fl

`

¨

˚

˝

0.374862 0.0517506

0.0938346 0.164442

˛

‹

‚

Ỹi `

»

—

–

0.141774 0.220595

´0.186571 0.318774

fi

ffi

fl

P̃ (4.6)

Vi “

»

—

–

0.432879 0.102101

0.102101 0.369753

fi

ffi

fl

(4.7)

P̃ “

»

—

–

0.0134933

0.00378235

fi

ffi

fl

`

»

—

–

0.374862 0.0517506

0.0938346 0.164442

fi

ffi

fl

pỸ1 ` Ỹ2q ´

»

—

–

0.090687 0.469108

´0.587907 0.826878

fi

ffi

fl

Z̃ (4.8)

Both equilibria are symmetric with respect to agents’ beliefs. Equilibrium (i) is symmetric with respect

to asset prices and all covariances are positive; a high price for asset 1 is correlated with a high return

for asset 2, and vice versa. In contrast, equilibrium (ii) has a negative covariance between P̃ 1 and F̃ 2;

a high price for asset 1 is correlated with a low return for asset 2. Equilibrium (ii) requires many more

iterations to reach convergence compared to (i), indicating that it may be locally unstable.
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5 Conclusion

Using a novel method, we have shown a linear REE exists in a finite-agent version of Admati (1985)’s

multi-asset REE model. Our method is to show that the set of possible covariance matrices char-

acterizing agents’ beliefs is convex, compact and nonempty; we then show that the mapping from

agents’ initial beliefs to updated beliefs is continuous. By Brouwer’s fixed point theorem, a fixed point

(which must be a REE) exists. Although this method does not provide a closed-form solution, we

still know that equilibrium beliefs are Gaussian and that Lemmas 3.3 and 3.1 hold in equilibrium.

We have numerically shown that multiple equilibria may exist. This method can be applied to other

rational expectations models with Gaussian uncertainty and where behavior is a linear function of

agents’ information.

This approach to existence of equilibria can be extended in two ways. First, in the static model, we

can extend the type of uncertainty to other, non-Gaussian distributions. In particular, it is known

that the exponential family of distributions has a parameter space that is an open, convex set. Second,

while remaining within the CARA-Gaussian framework, another possibility is to extend this approach

to models of strategic behavior with linear strategies, such as the model of Kyle (1989).

6 Appendix: Proofs

6.1 Preliminaries

Corollary 2.1 (Continuity of conditional Gaussian distribution).

Proof. The operations involved are: taking a submatrix of M ; matrix addition and multiplication;

and taking the matrix inverse. The matrix inverse is continuous over the set of nonsingular matrices,

which is guaranteed by the constraint M22 P Sn``; all the other operations are continuous over the set

of all real-valued matrices. Therefore, the mappings are continuous.

Lemma 6.1 (Positive definiteness and Schur complement). Suppose M “
“

A C
CT B

‰

is a symmetric,

real-valued matrix. Then the following are equivalent: (i) M ąL 0; (ii) B ąL 0 and A ąL CB
´1CT ;

(iii) A ąL 0 and B ąL C
TA´1C. (Bernstein (2009), Prop 8.2.4)
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Lemma 6.2 (Covariance inequality). Suppose x̃, ỹ are real-valued random variables with finite second

moments. Then |Covpx̃, x̃q|2 ď V arpx̃qV arpỹq (Mukhopadhyay (2000), Thm 3.9.6).

For A P Sn`, let λminpAq, λmaxpAq, dminpAq, dmaxpAq denote the minimum and maximum eigenvalues

and diagonal entries, respectively, of A.

Lemma 6.3 (Minimum and maximum eigenvalues of positive definite matrices). Suppose A,B P Sn`.

Then:

(a) λminpAqI ďL A ďL λmaxI. (Bernstein (2009), Corr. 8.4.2)

(b) 0 ď λminpAq ď dminpAq ď dmaxpAq ď λmaxpAq (Bernstein (2009), Corr. 8.4.7)

(c) A ďL păLq B ñ λminpAq ď păq λminpBq and λmaxpAq ď păq λmaxpBq (Bernstein (2009), Thm.

8.4.9)

(d) A ďL B ñ trpAq ď trpBq (Bernstein (2009), Corr. 8.4.10)

(e) The trace of A is equal to the sum of its eigenvalues. (Bernstein (2009), Fact 8.17.8)

Lemma 6.4 (Minimum and maximum eigenvalues of partitioned matrices). Suppose M Ă Sm`n`` “

V arpX̃, Ỹ q and is partitioned as in Lemma 2.1. Then:

(a) λminpMq ď λminpV arpX̃qq ď λmaxpV arpX̃qq ď λmaxpMq and λminpMq ď λminpV arpỸ qq ď

λmaxpV arpỸ qq ď λmaxpMq. (Bernstein (2009), Corr. 8.4.6)

(b) λmaxpMq ě λmaxpV arpX̃|Ỹ qq, λmaxpMq ě λmaxpV arpỸ |X̃qq, λminpMq ď λminpV arpX̃|Ỹ qq,

λminpMq ď λminpV arpỸ |X̃qq. (Zhang (2005), Corr. 2.3, and note that V arpX̃|Ỹ q “ M{M22 “

M11 ´M12M
´1
22 M

T
12).

Lemma 2.2 (Bounded positive semidefinite matrices).

Proof. (a) ñ (b): By Lemma 6.3b, d and e, the eigenvalues of B are bounded, and therefore the

eigenvalues and diagonal elements of A are bounded. By the covariance inequality 6.2, all off-diagonal

entries of A are also bounded. (b) ñ (c): Since trpAq is bounded, the sum of A’s eigenvalues are

bounded and each is non-negative, therefore λmaxpAq is bounded. (c) ñ (a): Let B “ λmaxI; then

(a) is satisfied.
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Lemma 2.3 (Positive definite matrices bounded away from singular).

Proof. (a) ñ (b): By Lemma 6.3b, d and e, the eigenvalues of B are bounded away from zero, and

therefore the eigenvalues of A are bounded away from zero. (b) ñ (c): By Lemma 6.4b. (c) ñ (a): By

Lemma 6.5, M11 “ V arpX̃q ěL V arpX̃|Ỹ q and M22 “ V arpỸ q ěL V arpX̃|Ỹ q are both bounded away

from singular. Consider the given condition that V arpX̃|Ỹ q is bounded away from singular. Then

there exists A P Sm`` such that

V arpX̃|Ỹ q “M11 ´M12M
´1
22 M

T
12 ěL A ąL 0 (6.1)

We want to show M P Sm`n`` exists such that M ěL M ąL 0. Subtract A{2 from both sides of Eq. 6.1

to get pM11 ´
A
2 q ´M12M

´1
22 M

T
12 ěL

A
2 ąL 0. Then

»

—

–

M11 M12

MT
12 M22

fi

ffi

fl

ěL

»

—

–

M11 ´
A
2 M12

MT
12 M22

fi

ffi

fl

ąL 0 (6.2)

The first inequality holds because
´

M11 M12

MT
12 M22

¯

´

´

M11´
A
2 M12

MT
12 M22

¯

“

´

A
2 0
0 0

¯

ěL 0. The second inequality

holds by Lemma 6.1. The second matrix is the desired M .

Corollary 2.2 (Inverse of bounded matrix is bounded away from singular).

Proof. The eigenvalues of A´1 are the inverse of the eigenvalues of A. λmaxpAq is bounded iff

λminpA
´1q “ λmaxpAq

´1 is bounded away from singular.

Lemma 6.5 (Loewner ordering of conditional variance). Suppose X̃, Ỹ are jointly Gaussian random

vectors. Then V arpX̃|Ỹ q ďL V arpX̃q.

Proof. By the law of total variance:

V arpX̃q “ EỸ rV arpX̃|Ỹ qs ` V arỸ

´

ErX̃|Ỹ s
¯

(6.3)

For a jointly Gaussian distribution, V arpX̃|Ỹ q is deterministic, so EỸ rV arpX̃|Ỹ qs “ V arpX̃|Ỹ q.

V arpX̃q ´ V arpX̃|Ỹ q “ V arỸ

´

ErX̃|Ỹ s
¯

which is positive definite, therefore V arpX̃|Ỹ q ďL V arpX̃q.
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Lemma 6.6 (Loewner lower bound of a closed set). Suppose X is a closed subset of Sn``. Then there

exists M P Sn`` such that for each M P X,M ěL M ąL 0.

Proof. Let λ “ minMPX λminpMq, the smallest eigenvalue across all M P X; then λ is bounded away

from singular. By Lemma 6.3a, M ěL λI ąL 0 for all M P X.

Lemma 6.7 (concavity of conditional variance). Suppose M Ă Sm`n`` “ V arpX̃, Ỹ q and is partitioned

as in Lemma 2.1. Then:

(a) the map M Ñ V arpX̃|Ỹ q “M11 ´M12M
´1
22 M

T
12 is concave.

(b) The upper level set of this map with respect to a fixed A P Sm` , GpAq “ tM P Sm`n` |M22 ąL

0, V arpX̃|Ỹ q ěL Au, is a convex, open set.

(c) Imposing the additional constraint M22 ěL B for some fixed B P Sn`` results in HpA,Bq “ tM P

Sm`n` |M22 ěL B ąL 0, V arpX̃|Ỹ q ěL Au, which is a convex, closed set.

Proof. For (a), see Corollary 1.5.3 in Bhatia (2007). For (b), the upper level set of a concave function

is a convex set; it is open since the constraint M22 ąL 0 defines an open set. For (c), we replace the

previous constraint with one that defines a closed set.

6.2 Proofs

Theorem 2.1 (Convexity of set of covariance matrices subject to constraints).

Proof. We proceed by induction. Let V 0
x denote the set of possible V arpX̃q before any constraints

have been added, and let V ix denote the set of valid covariance matrices after constraints 1, ..., i have

been added; we assume V ix is convex and closed. We form V i`1
x by defining an additional constraint

and taking the intersection of the set it defines with V ix .

(a) Suppose we add a type (a) constraint: for fixed A,B P Sn`, we impose A ďL V arpX̃Iq ďL B. Let

C denote the set tV arpX̃Iq P SI`|A ďL V arpX̃Iq ďL Bu, which is clearly a closed, bounded, and

convex subset of Sn`. Let V i`1
x “ V ix X C; this intersection is closed and convex.
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(b) Suppose we add a type (b) constraint: (i) V arpX̃Jq ěL A ąL 0; (ii) V arpX̃I |X̃Jq ěL B ěL 0. Let

C denote the set tV arpX̃, Ỹ q|V arpX̃Jq ěL A ąL 0, V arpX̃I |X̃Jq ěL B ěL 0u. By Lemma 6.7, C

is convex and closed, and so is V i`1
x “ V ix X C.

V 0
x “ Sn`, which is convex and closed. By induction, the property holds for any i.

Furthermore, suppose that after imposing constraints 1, ...i, each of V arpx̃1q, ...V arpx̃nq is bounded.

By the covariance inequality (Lemma 6.2), every off-diagonal element must also be bounded, so V ix is

bounded.

Lemma 3.3 (Expectation of beliefs and prices).

Proof. First result: apply the law of iterated expectations to ErEpF̃ |Ỹi, P̃ qs. Second result: take

expectations of Eqn 3.7 and plug in F̄ for each Erµ̃is and Z̄ for ErZ̃s:

ErP̃ s “ p
ÿ

i

W´1
i q´1p

ÿ

i

W´1
i Erµ̃isq ´ p

ÿ

i

W´1
i q´1ErZ̃ss (6.4)

“ p
ÿ

i

W´1
i q´1p

ÿ

i

W´1
i F̄ q ´ p

ÿ

i

W´1
i q´1Z̄ (6.5)

“ p
ÿ

i

W´1
i q´1p

ÿ

i

W´1
i qF̄ ´ p

ÿ

i

W´1
i q´1Z̄ “ F̄ ´ p

ÿ

i

W´1
i q´1Z̄ (6.6)

Lemma 3.1 (Boundedness of agent’s belief variance).

Proof. Apply Lemma 6.5 twice. First, condition pF̃ |Ỹi, P̃ q on pỸ1, ..., ỸI , Z̃q to get V arpF̃ |Ỹi, P̃ q ěL

V arpF̃ |P̃ , Ỹ1, ..., ỸI , Z̃q. Then pF̃ |Ỹ1, ..., ỸI , Z̃q is independent of pỸ1, ..., ỸI , Z̃q; since P̃ is a linear

function of pỸ1, ..., ỸI , Z̃q, then pF̃ |Ỹ1, ..., ỸI , Z̃q is also independent of P̃ . It makes no difference whether

P̃ is conditioned on or not, and Vi ěL V arpF̃ |P̃ , Ỹ1, ..., ỸI , Z̃q “ V . For the second inequality, condition

F̃ on pỸi, P̃ q to get V arpF̃ |Ỹi, P̃ q ďL V arpF̃ q.

Lemma 3.2 (Variance of price is bounded).
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Proof. By the law of total variance:

V arpF̃ q “ EỸi,P̃
rV arpF̃ |Ỹi, P̃ qs ` V arỸi,P̃

pErF̃ |Ỹi, P̃ sq (6.7)

V “ Vi ` V arpµ̃iq (6.8)

Therefore, V arpµ̃iq is bounded. By Lemma 3.1, each Vi and V ´1
i is bounded ñ each Wi and W´1

i is

bounded ñ the coefficients of µ̃1, ..., µ̃I , Z̃ in Eqn 3.7 are bounded. Since P̃ is a linear combination of

random variables with bounded variance and bounded coefficients, V arpP̃ q must be bounded.

Lemma 3.4 (Variance bounds on private signal, price, and belief).

Proof. (i) and (iii) follow from the fact that the mapping T involves computing the conditional distribu-

tion of pF̃ |Ỹi, P̃ q in Eqns. 3.12 and 3.12, and applying Lemmas 3.1 and 3.2. (ii): Consider the matrix Θ

given by Eqn. 3.18; for any eigenvalue λipΘq, we have |λipΘq| ă 1 (see discussion following Eqn. 3.19).

Then the corresponding eigenvalue of pI ´Θq´1 is 1
1´λipΘq

, which is bounded away from zero. There-

fore, the variance of A2Z̃, where A2 “ ´pI ´ Θq´1p
ř

iW
´1
i q´1 (Eqn. 3.22) is bounded away from

singular. Since V arpA2Z̃q “ V arpP̃ |Ỹ1, ...ỸIq, and by Lemma 6.5, V arpP̃ |Ỹiq ěL V arpP̃ |Ỹ1, ...ỸIq,

then V arpP̃ |Ỹiq is bounded away from singular. Lemma 2.3 completes the result.

Lemma 3.5 (Convexity and compactness of agents’ belief variance space).

Proof. We apply Theorem 2.1. Constraint 3.24 is a type (a) constraint equivalent to

»

—

–

V V

V T V ` Si

fi

ffi

fl

ďL V arpF̃ , Ỹiq ďL

»

—

–

V V

V T V ` Si

fi

ffi

fl

(6.9)

Constraint 3.26 is a type (a) constraint. Constraints 3.25 and 3.27 are a type (b) constraint. Thus,

the result holds.

19



References

Admati, A. (1985): “A Noisy Rational Expectations Equilibrium for Multi-Asset Securities Prices,”

Econometrica, 53(3), 629–658.

Bernstein, D. S. (2009): Matrix Mathematics - Theory, Facts, and Formulas, 2nd ed. Princeton

University Press.

Bhatia, R. (2007): Positive definite matrices. Princeton University Press.

Breon-Drish, B. (2015): “On Existence and Uniqueness of Equilibrium in a Class of Noisy Rational

Expectations Models,” Review of Economic Studies, 82, 868–921.

Carpio, R., and M. Guo (2018): “Specialization in Investor Information and the Diversification

Discount,” Discussion paper.

Chabakauri, G., K. Yuan, and K. Zachariadis (2016): “Multi-asset noisy rational expectations

equilibrium with contingent claims,” Discussion paper.

Dai, L. (2018): “Asset bundling and information acquisition of investors with different expertise,”

Journal of Economic Theory, 175, 447–490.

Grossman, S., and J. Stiglitz (1980): “On the impossibility of informationally efficient markets,”

American Economic Review, 70, 393–408.

He, H., and J. Wang (1995): “Differential Information and Dynamic Behavior of Stock Trading

Volume,” Review of Financial Studies, 8(4), 919–972.

Hellwig, M. F. (1980): “On the Aggregation of Information in Competitive Markets,” Journal of

Economic Theory, 22, 477–498.

Horn, R. A. (1990): “The Hadamard Product,” in Matrix Theory and Applications (Processdings of

Symposia in Applied Mathematics 40), pp. 87–169.

Kyle, A. S. (1989): “Informed speculation with imperfect competition,” The Review of Economic

Studies, 56(3), 317–355.

20



Mukhopadhyay, N. (2000): Probability and statistical inference. Marcel Dekker.

Pálvölgyi, D., and G. Venter (2015a): “Multiple Equilibria in Noisy Rational Expectations

Economies,” Discussion paper.

(2015b): “On Equilibrium Uniqueness in Multi-Asset Noisy Rational Expectations

Economies,” Discussion paper.

Schott, J. R. (2017): Matrix Analysis for Statistics, 3rd ed. John Wiley and Sons.

Villalonga, B. (2004): “Diversification discount or premium? New evidence from the business

information tracking series,” The Journal of Finance, 59(2), 479–506.

Zhang, F. (2005): The Schur Complement and its Applications. Springer.

Zhou, C. (1998): “Dynamic portfolio choice and asset pricing with differential information,” Journal

of Economic Dynamics and Control, 22, 1027–1051.

21


	Introduction
	Related Literature

	Preliminaries
	Convexity and Compactness of a Set of Covariance Matrices with Constraints

	The model: Admati (1985) with finite agents
	Existence of Equilibrium with Finite Agents
	Mapping from Initial Beliefs to Updated Beliefs
	The Set of Agents' Belief Variances


	Numerical Example and Multiple Equilibria
	Conclusion
	Appendix: Proofs
	Preliminaries
	Proofs


