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Abstract
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1 Introduction

In corporate finance, the ”diversification discount” refers to the empirical regularity that a

diversified firm seems to be valued less than a portfolio of comparable single-segment firms.

A closely related phenomenon is a corporate spin-off, in which one or more divisions are

split off into a separate entity with own stock price, but is still owned by the shareholders

of original firm. Managers and activist investors frequently justify spinoffs by arguing that

components of a firm may be undervalued due to poor visibility; ”pure play” stocks, on the

other hand, are said to be rewarded by the market with higher valuations. For example, in

2014, the activist investor Carl Icahn invoked the diversification discount when arguing for

the breakup of Ebay and PayPal (La Roche 2014):

”We believe that the separation of the traditional eBay and PayPal businesses

will: (1) highlight the significant value of the disparate businesses currently shrouded

by a conglomerate discount the market has afforded eBay; (2) focus and empower

independent management teams to most effectively build two very different busi-

ness platforms, make economic decisions independent of each other and, most

importantly, foster innovation; and (3) provide an even more valuable currency

for future bolt-on acquisition opportunities...”

Empirically, spin-offs seem to generate positive abnormal returns (Veld and Veld-Merkoulova

2009). We present a theoretical explanation for this phenomenon based on heterogeneity of

investor beliefs; specifically, in the CARA-Gaussian framework, we show that heterogeneity

among investors’ belief covariance matrices can result in a diversification discount. We

interpret this heterogeneity as specialization in information; investors differ in the market
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sectors that they pay attention to, which is captured by a lower variance for specific assets

in their belief covariance matrix. When different assets are combined in a single stock, all

investors are forced to hold these assets in the same fixed ratio, regardless of each investor’s

ideal portfolio. This must be compensated for with a higher risk premium and hence lower

prices. We first establish our result in a setting with exogenous beliefs; then, we show that

our result is compatible with learning from prices in a noisy rational expectations equilibrium

(REE) framework when expected market value is considered.

In contrast to other models of the diversification discount, our result depends only on het-

erogeneity of beliefs, and does not assume ”noise traders”, overconfidence, or bounded ratio-

nality by investors. In some models of the diversification discount, a spinoff always results

in increased value for the firm; if taken to its logical conclusion, this would imply that firms

should split into very many parts. In contrast, in our model there is a natural limit to

the types of spinoffs that increase market value; a spinoff when there is no heterogeneity in

investor specialization does not result in an increase in market value.

We provide a proof for the general multi-asset, multi-investor case with arbitrary belief

variances among investors, by applying results from the analysis of positive definite matrices.

This reassures us that the commonly considered two-asset, two-investor model is not a special

case that can be reversed in higher dimensions, and that we can treat multi-firm spinoffs

(which, though rare, exist in the data) similarly to one-firm spinoffs. We also show that the

discount is minimized (and hence the incentive for a spinoff is maximized) when information

specialization among investors is maximized in a certain sense. We then empirically test our

model using data on US corporate spinoffs from 2001-2015. We develop a novel continuous

measure of industry similarity based on the behavior of sell-side analysts; we propose that
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industries that have more analysts in common should have investor communities that are less

specialized, and vice versa. We find that our measure of industry similarity has a positive,

strongly significant association with a spinoff’s abnormal returns on its announcement date.

The rest of the paper is organized as follows: Section 2 reviews the theoretical literature and

shows how investor specialization can generate a diversification discount in a simple two-

investor, two-asset model. Section 3 extends this result to any number of investors and assets,

and examines the configuration of investor beliefs that would result in the largest possible

diversification discount. Section 4 presents our empirical tests of our model’s predictions.

Section 5 concludes.

2 A Two-Investor, Two-Asset Model

2.1 Theoretical Literature

The literature on the diversification or ”conglomerate” discount originates with Lang and

Stulz (1994) and Berger and Ofek (1995)’s findings that a conglomerate seems to have a lower

market value than a comparable collection of single-segment firms. Maksimovic and Phillips

(2013) provides a recent survey of this literature, including the possibility that previous

empirical results may be the result of measurement artifacts. A corporate spinoff provides

the opportunity to directly observe whether a discount exists, by comparing total market

value before and after the spinoff.

A recent paper, Dai (2018), presents a model similar to ours in many respects; this paper

builds on Van Nieuwerburgh and Veldkamp (2009)’s model of investors with limited attention
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and analyzes the pricing implications of asset bundling in this setting. It examines three

channels through which the total market value of a collection of assets may depend on

whether they are bundled or not; one of these, the ”trade-restriction channel”, is essentially

the same as the mechanism presented in our paper. Our model differs from Dai (2018) in

the following ways: (i) that paper assumes a continuum of agents with independent private

signals, as is standard in this literature, while we focus on the case with a finite number

of agents. Under the continuum assumption, a premium1 does not exist almost surely (see

Section 3.2.1 for an elaboration). (ii) Also as is standard, it assumes all agents have a

common prior belief about the mean of asset returns, which ensures that a premium cannot

exist; and (iii) it assumes that agents’s belief variances are simultaneously diagonalizable (as

in Lemma 3.4), while our result Prop. 3.1 allows for arbitrary belief variances.

Our model’s key assumption is that there are different investor groups, or clienteles, that

specialize in specific sectors or industries. Bhandari (2013) presents a model based on Miller

(1977)’s notion of optimists and pessimists who disagree about the prospects of a firm;

a discount arises when different investor groups disagree about the prospects of different

segments of a firm.

Another strand of the literature develops models in which the informativeness of stock prices

about asset returns has an effect on firm valuation. Habib, Johnsen, and Naik (1995) present

a two-asset model based on the Grossman and Stiglitz (1980) framework of informed and

uninformed investors. When a firm is split into separate stocks, uninformed investors receive

multiple price signals, which results in a reduced belief variance and hence a higher demand

1As Dai (2018) notes, a diversification premium (instead of a discount) is sometimes observed (Villalonga
2004), so a complete theory of diversification should be able to explain both a discount and a premium; the
”trade-restriction” channel in that paper cannot generate a premium, but the ”discipline” channel can.
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for the stock, compared to when they receive a single price signal. Liu and Qi (2008) presents

a model in which firms’ managers rely on the informativeness of stock prices in order to direct

investment; hence, more price signals increases the productivity of the firm. As is common in

these types of models, noise in the asset supply (”noise traders”) is necessary to ensure prices

do not become fully revealing. However, these results depend on the specific assumptions

made about the magnitude of asset supply noise before and after the split. Furthermore, if

taken to its logical conclusion, these models imply that a firm should keep on splitting itself

into more pieces, as long as the separate signals are not perfectly correlated (e.g. if the asset

supply noises for the separate stocks are independent). In contrast, our model will generate

an increase in market value only if the separate stocks correspond to existing specialization

in the investor population.

Another theoretical approach is to assume investors are boundedly rational in some way. In

Cao, Wang, and Zhang (2005), investors are heterogeneous in their degree of uncertainty

aversion; in equilibrium, more uncertainty-averse investors do not invest at all when there

are two separate stocks, but will invest in a single stock. In Hirshleifer and Teoh (2003), there

are two types of investors: attentive investors, who process all available financial information

on a firm, and inattentive investors who do not. Inattentive investors only pay attention to

the average growth rate of a firm, which leads to undervaluation of a firm with a rapidly

growing segment. Scheinkman and Xiong (2003) present a dynamic asset-pricing model in

which two investors observe signals from two subsidiaries of the same firm; both investors

are overconfident in that they believe their signal is more precise than it actually is.

Two game-theoretic models of the discount are presented in Chemmanur and Yan (2004),

in which spinoffs are more likely to be taken over by more productive managers, and Nanda
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and Narayanan (1999), in which a spinoff enables investors to distinguish between divisions

of differing quality in a separating equilibrium.

Finally, the decision of whether to create a spinoff or not can be seen as a type of security

design problem. There are several papers examining this problem from different viewpoints;

Allen and Gale (1988) use risk-allocation considerations, while Boot and Thakor (1993)

use informational considerations. Note that the security design literature generally tries to

explain how to maximize investors’ welfare, while this paper and the other papers mentioned

above try to explain how to maximize the firm’s total market value, which is not necessarily

the same thing.

In the CARA-Gaussian framework, investor specialization occurs when different investors

have a lower belief variance for different assets. Our approach is inspired by Van Nieuwer-

burgh and Veldkamp (2009)’s model of investors with limited attention, in which investors

have a finite capacity to reduce the variance of signals they receive, and must prioritize which

industries to learn more about. They develop a multi-asset noisy REE model where investors

specialize in learning exclusively about a single asset type, and apply this to the home bias

puzzle. Our paper does not explicitly incorporate a signal choice for investors, but we can

interpret the exogenously given variances in our model as the result of such specialization.

2.2 The Model

We present a standard asset pricing model with finite heterogeneous agents, CARA utility,

and Gaussian asset returns. Initially, we will assume that agents’ beliefs are given exoge-

nously; later, we will allow agents to learn from prices and private signals. There are I
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agents and two periods; agents trade in the first period and consume in the second. Each

agent i “ 1, ..., I invests his initial wealth w0i in a riskless asset and N risky assets. Agent i

has population mass λi, where λi ą 0 and
ř

i λi “ 1. The riskless rate of return is assumed

to be 1. Let F̃ denote the random vector of risky asset returns. Agent i’s final wealth is

w̃1i “ w0iR `D
T
i pF̃ ´ PRq (2.1)

P is the vector of market prices, and DipP q is the vector of holdings of risky assets. Each

agent i has exponential utility uipwq “ ´ exppw{ρiq. Agent i’s belief about the asset payoff

F̃ is Gaussian, with mean µi and variance Σi “ EirpF̃ ´µ
iqT pF̃ ´µiqs. For now, we will take

these parameters as exogenously given.

Given beliefs characterized by µi and Σi, optimal demand is given by

DipP q “
1

ρi
Σ´1
i pµ

i
´ P q (2.2)

The aggregate supply of assets is given by the vector Z, which we will assume is a nonrandom

vector of ones for now. Let Vi “
ρi
λi

Σi; this is the ”effective” variance of agent i’s belief,

incorporating the agent’s risk tolerance and population mass. In the rest of the paper, we

will simply refer to Vi as the variance. In equilibrium, the market clearing condition is

I
ÿ

i“1

λiDipP q “
I
ÿ

i“1

V ´1
i pµi ´ P q “ Z (2.3)

Equilibrium prices are given by:

P “ p
I
ÿ

i“1

V ´1
i q

´1
p

I
ÿ

i“1

V ´1
i µiq ´ p

I
ÿ

i“1

V ´1
i q

´1Z (2.4)
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The first term in this expression, p
řI
i“1 V

´1
i q´1p

řI
i“1 V

´1
i µiq is equivalent to the Bayesian

posterior mean that results from observing I normally distributed signals with realized val-

ues µ1, ..., µI , and where the ith signal is known to have a variance of Vi. The quantity

p
řI
i“1 V

´1
i q´1 in the second term is the Bayesian posterior variance. Thus, we have:

Remark 2.1 (Markets as a Bayesian aggregator of information). Equilibrium prices are

identical to an economy with a representative agent who has ”observed” the (scaled) beliefs

of the I agents and combined them using Bayesian updating.

2.3 A Two-Asset Example

Suppose there are two assets n “ 1, 2, and two agents i “ 1, 2, each with the same size:

λ1 “ λ2 “
1
2
. We assume both types have the same risk aversion ρ1 “ ρ2 “ ρ. Investor i’s

belief has mean µi “ pµi1, µ
i
2q and variance Σi, where for β P p0, 1q:

Σ1 “

»

—

–

βσ2 0

0 σ2

fi

ffi

fl

,Σ2 “

»

—

–

σ2 0

0 βσ2

fi

ffi

fl

We interpret this as specialization in information by agents: agent 1 has relatively more

expertise about asset 1 than asset 2, and vice versa. This specialization may arise if agent 1

has chosen to observe signals about the industry of asset 1 but not asset 2 (and vice-versa

for agent 2). We will compare two regimes: a ”combined-firm” regime where the two assets

are held by a single firm with a single stock, and a ”separate-stocks” regime where each asset

has its own stock. In each case, we will assume that the supply of all stocks is normalized

to 1.
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First, consider the combined-firm regime. We assume there are no production efficiencies or

inefficiencies caused by combining the two assets; the return of the single stock is simply the

sum of the returns of the individual assets. The belief means of each agent for the combined

firm are µ1
1 ` µ1

2 and µ2
1 ` µ2

2, respectively, and the variances of both agents are p1 ` βqσ2.

The equilibrium price of the single stock is given by

Pcombined “

ˆ

1

2ρp1` βqσ2
`

1

2ρp1` βqσ2

˙´1 ˆ 1

2ρp1` βqσ2
pµ1

1 ` µ
1
2q `

1

2ρp1` βqσ2
pµ2

1 ` µ
2
2q ´ 1

˙

(2.5)

“
µ1

1 ` µ
1
2 ` µ

2
1 ` µ

2
2

2
´ ρp1` βqσ2 (2.6)

Total market value is given by P ¨ Z, which is simply Pcombined.

Now, consider the separate-stocks regime. The price vector is given by

P “

ˆ

1

2ρ
Σ´1

1 `
1

2ρ
Σ´1

2

˙´1

¨

˚

˝

1

2ρ
Σ´1

1

»

—

–

µ1
1

µ1
2

fi

ffi

fl

`
1

2ρ
Σ´1

2

»

—

–

µ2
1

µ2
2

fi

ffi

fl

´

»

—

–

1

1

fi

ffi

fl

˛

‹

‚

(2.7)

“
1

1` β

»

—

–

µ1
1 ` βµ

2
1 ´ 2βρσ2

βµ1
1 ` µ

2
2 ´ 2βρσ2

fi

ffi

fl

(2.8)

Combined market value is given by P ¨ Z “ p1 ` p2, which is equal to:

Pseparate “
µ1

1 ` βµ
2
1 ` βµ

1
1 ` µ

2
2 ´ 4ρβσ2

1` β
(2.9)

The difference between the two market values is:

Pseparate ´ Pcombined “
p1´ βqpµ2

1 ´ µ
1
1 ` µ

1
2 ´ µ

2
2 ` 2p1´ βqρσ2q

2p1` βq
(2.10)
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In general, if there are no restrictions on µ1 and µ2, the discount may be positive or negative.

2.3.1 Equal Belief Means

Consider the case where both agents have the same belief mean: µ1 “ µ2 “ pµ1, µ2q. Then

we have

Pcombined “ pµ1 ` µ2q ´ ρp1` βqσ
2 (2.11)

Pseparate “ pµ1 ` µ2q ´ ρ
4βσ2

1` β
(2.12)

Pseparate ´ Pcombined “ ρ
p1´ βq2σ2

1` β
(2.13)

This expression is positive for β P p0, 1q; its derivative with respect to β is ρσ2
´

1´ 4
p1`βq2

¯

,

which is negative. The diversification discount increases with σ2 and with a greater degree

of specialization (that is, a lower β) among agents.

Suppose µ1 “ µ2 “ µ̄. We can express the discount (as a fraction of of Pcombined) as a

function of σ2

µ̄
:

Pseparate ´ Pcombined
Pcombined

“

˜

1` β

p1´ βq2

˜

2

ρσ
2

µ̄

´ p1` βq

¸¸´1

(2.14)

Figure 1 plots the discount fraction for the parameter values ρ “ 1, σ
2

µ̄
“ t0.1, 0.25, 0.5u.

When the variance of payoffs is high compared to its mean and the degree of specialization

is high, the discount can be economically significant.

Intuitively, this phenomenon can be understood as the result of a restriction of the investor’s
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Figure 1: Discount as a fraction of the combined price for ρ “ 1, σ
2

µ
“ t0.1, 0.25, 0.5u
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choice set. Under the single-firm regime, the ratio of asset 1 to asset 2 in every investor’s

portfolio is fixed, which prevents investors from achieving their ideal portfolio. In equilibrium,

investors will demand a higher risk premium (and hence lower prices) to compensate.2 In

the separate-stocks regime, agent i’s demand for each asset is given by:

DipP q “
1

ρi
Σ´1
i pµ

i
´ P q “

»

—

–

Di,1

Di,2

fi

ffi

fl

“
1

ρi

»

—

–

pβσ2q´1pµi1 ´ P1q

pσ2q´1pµi2 ´ P2q

fi

ffi

fl

(2.15)

Suppose µi1 “ µi2 and P1 “ P2; then the ratio Di,1{Di,2 is equal to β (each agent has a

greater demand for the asset in which he has more expertise); in the single-firm regime, both

investors must hold assets 1 and 2 in a 1:1 ratio.

3 General Multi-Investor, Multi-Asset Model

We generalize this result to any number of assets and agent types, with agent beliefs that

can have arbitrary correlations between asset returns, including non-diagonal covariance

matrices. In order to do this, we will introduce tools from the analysis of positive definite

matrices; while this increases the technical burden for the reader, it allows us to give results

that hold for any number of arbitrary covariance matrices.

2This is essentially the ”trade-restriction” channel of Dai (2018).
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3.1 Preliminaries

For any matrix A, let sumpAq denote the sum of all elements of A. Suppose we have an

N -dimensional random vector x “ px1, ...xNq
T with covariance matrix Σ; then the variance

of x1 ` ... ` xN is given by sumpΣq. Suppose an agent’s belief covariance matrix for the

separate-stocks regime is V ; then, this agent’s belief about returns for the combined firm

must have variance sumpV q. If V is diagonal, this is also equal to the trace of V , denoted

trpV q. We will utilize the following definitions and results on positive definite matrices

(proofs are given in the Appendix). In what follows, A1, ..., An, A
1
1, ..., A

1
n, A, and B are

arbitrary real-valued, symmetric, positive definite matrices of the same dimension.

Definition 3.1. We define the Loewner partial ordering: A ěL pąLq B whenever A´ B is

positive semidefinite (positive definite).

The Loewner ordering has the following statistical interpretation (Horn (1990), p.141): sup-

pose X̃, Ỹ are Rn-valued random variables, with V arpX̃q “ A and V arpỸ q “ B. Then

A ěL pąLq B iff for any nonzero c P Rn, V arpc ¨ X̃q ě pąq V arpc ¨ Ỹ q. It is a natu-

ral way to order variances based on conditioning on events: if X̃, Ỹ are Gaussian, then

V arpX̃q ěL V arpX̃|Ỹ q, i.e. uncertainty must weakly decrease after observing new informa-

tion.

Definition 3.2. The parallel sum of A1, ...An is denoted A1 : ... : An “ pA
´1
1 ` ...`A´1

n q
´1.

The harmonic mean of A1, ..., An is npA1 : ... : Anq.

The Bayesian posterior after observing normally distributed signals with realized values

µ1, ...µI and known variances V1, ..., VI has mean pV1 : ... : VIqp
řI
i“1 V

´1
i µiq and variance

V1 : ... : VI .

Lemma 3.1. (monotonicity and joint concavity of parallel sum): A1 : ... : An is monotoni-
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cally increasing in A1, ..., An:

A1 ěL A
1
1, ..., An ěL A

1
n ñ A1 : ... : An ěL A

1
1 : ... : A1n (3.1)

and jointly concave in A1, ..., An. For t P r0, 1s:

ptA1 ` p1´ tqA
1
1q : ... : ptAn ` p1´ tqA

1
nq ěL tpA1 : ... : Anq ` p1´ tqpA

1
1 : ... : A1nq (3.2)

Lemma 3.2. (inequality between parallel sum of sum/trace and sum/trace of parallel sum):

1. sumpA1 : ... : Anq ď sumpA1q : ... : sumpAnq.

2. trpA1 : ... : Anq ď trpA1q : ... : trpAnq.

Lemma 3.3. (joint concavity of sum/trace of parallel sum): sumpA1 : ... : Anq and trpA1 :

... : Anq are jointly concave over A1, ..., An.

Lemma 3.4. (equality of sum/trace of parallel sum): Suppose A1, ..., An are simultaneously

diagonalizable: there exists an orthornormal P such that for each i “ 1, ..., n, Ai “ P TDiP ,

where Di is the diagonal matrix containing the eigenvalues of Ai, and the rows of P are the

shared eigenvectors of A1, ..., An. If Di “ αiD where αi ‰ 0 for i “ 1, ..., n, that is, each Di

matrix is some matrix D multiplied by a nonzero scalar, then trpA1 : ... : Anq “ trpA1q : ... :

trpAnq and sumpA1 : ... : Anq “ sumpA1q : ... : sumpAnq.

The economic interpretation of the conditions of Lemma 3.4 is that all agents agree on what

the statistically independent risk factors affecting asset returns are (the eigenvectors), though

they may disagree on how much each risk factor contributes to a specific asset’s return (the

eigenvalues). Furthermore, all agents agree on the relative contribution of each risk factor

to every asset, though they may disagree on the absolute contribution.
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Let I, the number of agent types, and N , the number of assets, be positive integers.

Assumption 3.1.

1. The risk-free interest rate R is 1.

2. The vector of asset supplies Z is a vector of ones.

3. Every agent’s belief covariance matrix Vi is positive definite.

In the combined-firm regime, the equilibrium price is given by

Pcombined “ psumpV1q : ... : sumpVIqq

˜

I
ÿ

i

sumpViq
´1sumpµiqq ´ 1

¸

(3.3)

In the separate-stocks regime, the equilibrium price vector is given by

»

—

—

—

—

–

p1

...

pN

fi

ffi

ffi

ffi

ffi

fl

“ p

I
ÿ

i“1

V ´1
i q

´1
p

I
ÿ

i“1

V ´1
i µiq ´ p

I
ÿ

i“1

V ´1
i q

´1

»

—

—

—

—

–

1

...

1

fi

ffi

ffi

ffi

ffi

fl

(3.4)

The combined value of all stocks is given by

Pseparate “
N
ÿ

n“1

pn “ sum

˜

pV1 : ... : VIqp
I
ÿ

i“1

V ´1
i µiq

¸

´ sumpV1 : ... : VIq (3.5)

Now, we can compare prices in the two regimes under different assumptions about agent

beliefs.

Proposition 3.1. (diversification discount under equal belief means): Suppose all agents

have the same belief means: µi “ µ for i “ 1, ..., I; then Pcombined ď Pseparate.
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Proof.

Pcombined “ sumpµq ´ rsumpV1q : ... : sumpVIqs (3.6)

Pseparate “ sumpµq ´ sumpV1 : ... : VIq (3.7)

By Lemma 3.2, sumpV1 : ... : VIq ď sumpV1q : ... : sumpVIq, therefore Pcombined ď Pseparate.

Proposition 3.2. (no discount with common eigenvectors and eigenvalues are equal up to

scale factor): Suppose V1, ..., Vi satisfy the conditions in Lemma 3.4 (common eigenvectors

and eigenvalues are equal up to a scale factor). Then Pcombined “ Pseparate.

Under the equal belief mean assumption, there is never a diversification premium. A zero

discount holds if agents have homogeneous beliefs, but can also occur if all agents agree on

the independent risk factors and their relative contributions to asset prices. Changes in the

distribution of risk tolerance or population mass among agent types, therefore, do not lead

to a discount. This also ensures that if a spinoff occurs when there is no heterogeneity of

beliefs, there will be no diversification discount and hence no increase in value for the firm.

This is in contrast to models where the informativeness of stock prices always increases with

a spinoff.

If both belief means and variances are arbitrary, a discount, premium, or neither may exist.

To see this, consider the equilibrium price equation 2.4 with I “ 2. The first term is a

Bayesian posterior mean after observing two signals (or alternatively, updating a prior with

one signal); in the combined-firm regime and separate-stocks regime, it is given by the first

term in Equations 3.3 and 3.5, respectively. It is known that in Bayesian inference with
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Gaussian signals, if only the prior and observation locations are known while the variances

are free variables, then the posterior mean may lie virtually anywhere (Chamberlain and

Leamer (1976), Theorem 1). Therefore, the element sum of the posterior mean in the

separate-stocks regime may be arbitrarily higher or lower than in the combined-firm regime,

as was demonstrated by Eqn 2.10 for the 2-agent, 2-asset case.

3.2 Noisy REE Model

We have seen that a discount exists if belief means are equal, but may or may not exist if

belief means are allowed to vary arbitrarily. In this section we consider the multi-asset, noisy

REE model of Admati (1985). Noisy REE models, beginning with Grossman and Stiglitz

(1980) and Hellwig (1980), relax the strong assumption of equal belief means in a structured

way, by assuming agents share a common prior belief about (unobserved) asset returns, then

endowing agents with a private signal that is correlated with asset returns. Furthermore,

agents are allowed to learn from prices, which have dual roles of clearing markets while also

serving as a signal that reveals some part of other agents’ private information. Hellwig (1980)

developed a multi-agent REE model with one risky asset; Admati (1985) extended this to

the case with multiple risky assets.

Assume two time periods; at t=0, the economy receives a Gaussian shock ỹ „ Npȳ,Σyq,

which includes the asset return realization F̃ , signals observed by agents, and asset supply

noise. At t=1, agents update their beliefs, trade, and reach equilibrium. We assume an

equilibrium exists, and at equilibrium:

• agent i’s updated belief mean is a fixed linear function of ỹ: µ̃i “ γipỹq, where γip¨q is
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linear;

• agent i’s updated belief variance is a deterministic constant Wi;

• the asset supply vector is a fixed linear function of ỹ: Z̃ “ Zpỹq, with E rZpỹqs being

a vector of ones.

Agents’ demand vectors and the market clearing condition then become linear functions of

ỹ, given by substituting pγipỹq, Zpỹq,Wiq for pµi, Z, Viq in Eqns. 2.2 and 2.4. Since Eqns.

2.4, 3.3 and 3.5 are linear in pµi, Zq when Vi is taken as a constant, we can take time-0

expectations w.r.t. ỹ:

E rPRs “ p
I
ÿ

i“1

W´1
i q

´1
p

I
ÿ

i“1

W´1
i E

“

γipỹq
‰

q ´ p

I
ÿ

i“1

W´1
i q

´1E rZpỹqs (3.8)

E rPcombineds “ psumpW1q : ... : sumpWIqqp

I
ÿ

i

sumpWiq
´1sumpE

“

γipỹq
‰

qq

´ psumpW1q : ... : sumpWIqq (3.9)

E rPseparates “ sum

˜

pW1 : ... : WIqp

I
ÿ

i“1

W´1
i E

“

γipỹq
‰

q

¸

´ sumpW1 : ... : WIq (3.10)

If E rγipỹqs is the same for i “ 1, ..., I, then the proof of Proposition 3.1 goes through, applied

to E rPcombineds and E rPseparates.

Proposition 3.3. (diversification discount in expectation) Suppose that the economy is

driven by a Gaussian shock ỹ, and a linear equilibrium exists where:

• agent i’s belief mean is linear in ỹ: µ̃i “ γipỹq, where γip¨q is linear

• agent i’s belief variance is a deterministic constant Wi;

• the asset supply Z̃ “ Zpỹq is linear in ỹ, with E rZpỹqs equal to a vector of ones
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• the market price is linear in ỹ, satisfying the condition P pỹq “ p
řI
i“1W

´1
i q´1p

řI
i“1W

´1
i γipỹqq´

p
řI
i“1W

´1
i q´1Zpỹq

Then E rPcombineds ď E rPseparates. If W1, ...,WI have common eigenvectors and their eigen-

values are equal up to a scale factor, then equality holds.

If a discount holds in expectation, then a risk-neutral firm would optimally choose to break

itself up into the separate-stocks regime rather than stay in the combined-firm regime. Note

that we do not make any assumption on how equilibrium beliefs are reached, so long as

belief means are linear in ỹ (and therefore Gaussian). We show that this result holds in

the noisy REE model of Admati (1985), which we briefly summarize below. Let F̃ de-

note the unobserved vector of asset returns, and let Z̃ denote the asset supply; both are

Gaussian random variables with means F̄ , Z̄ respectively. Each agent i receives a private

signal Ỹi “ F̃ ` ε̃i, where ε̃i is iid zero-mean Gaussian noise. Thus, the Gaussian shock

ỹ is given by ỹ “ pF̃ , Z̃, ε̃i, ..., ε̃Iq. If we assume that a linear equilibrium pricing function

exists, then P̃ is a linear function of ỹ, and pF̃ , P̃ , Z̃, Ỹ1, ..., ỸIq are jointly Gaussian with

a deterministic variance matrix. In a noisy REE, each agent is assumed to know the true

joint distribution of pF̃ , Ỹi, P̃ q; after observing his private signal Ỹi and the equilibrium price

P̃ , his belief is the conditional distribution of F̃ |ỹi, P̃ , which is also Gaussian. Agent i’s

updated belief mean is µ̃i “ ErF̃ |ỹi, P̃ s, which is a linear function of ỹ; the belief variance is

V arpF̃ |ỹi, P̃ q, which is a deterministic constant. Applying the law of iterated expectations,

we get Erµ̃is “ E
”

ErF̃ |ỹi, P̃ s
ı

“ ErF̃ s “ F̄ ; thus, the expectation of all agents’ belief means

are equal. Therefore, the conditions of Proposition 3.3 are satisfied, and a diversification dis-

count weakly holds for expected market value. Note, however, that we cannot say anything

about the relative size of the discount when compared to the setting without learning from
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prices.

3.2.1 Infinite vs. Finite Agents

The REE literature typically assumes that there are infinitely many agents, each of which

observes an i.i.d. Gaussian private signal. It is further assumed that a law of large numbers

applies, and the realized average signal across agents is then assumed to be equal to the

expectation of the signal distribution, a.s. This makes an analytic solution tractable, but

also guarantees that the conditions for Lemma 3.1 hold a.s. To see this, suppose that there

are a continuum of agents, indexed by i P r0, 1s. After observing their private signal, each

agent’s belief mean is an i.i.d. Gaussian random variable: µ̃i „ Npµ̄,Σµq. If we assume that

the realized average belief across the agent population is equal to its expectation, a.s., then

the first term in Eq 2.4 becomes (Admati (1985), Eq 16):

ˆ
ż 1

0

V ´1
i

˙´1 ż 1

0

V ´1
i µ̃idi “

ˆ
ż 1

0

V ´1
i

˙´1 ż 1

0

V ´1
i µ̄ “ µ̄ a.s. (3.11)

This term is equal in the combined and separate stocks regime a.s., therefore Lemma 3.1 holds

a.s. The assumption of infinite or finite agents results in different behavior at equilibrium;

with infinite agents, a diversification premium will not occur as a result of agents’ realized

beliefs a.s., but may occur with finite agents.3

3Hellwig (1980) proved existence of a linear REE in the single-asset case with infinite and finite agents;
Admati (1985) only proved existence in the multi-asset case with infinite agents. Existence of equilibrium
with finite agents was proven in Carpio and Guo (2017).
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3.3 Beliefs That Maximize Combined Market Value

We can ask the question: what distribution of belief variances V1, ..., VI among agents will re-

sult in a larger discount (and hence a larger incentive to create a spinoff)? The diversification

discount is larger when sumpV1 : ... : VIq is smaller. The joint concavity of sumpV1 : ... : VIq

(by Lemma 3.3) has two immediate implications. First, the discount is smaller when V1, ..., VI

is a convex combination of other possible collections of variances. Second, a concave function

over a convex region is minimized (and therefore the discount is maximized) at an extreme

point (i.e. a point that is not a convex combination of other points); if we can formulate an

appropriate convex feasible region, we can find the variances that maximize the discount.

3.4 Simultaneously diagonalizable variances

A tractable case is to assume all agents’ variances have the same eigenvectors: there exists

an orthonormal P such that Vi “ P TDiP , where Di is a diagonal matrix; the rows of P are

the shared eigenvectors and the diagonal entries of Di are the associated eigenvalues of Vi.

As before, we interpret this to mean that all agents agree on the independent risk factors

underlying asset returns. The next results show that we can reduce the feasible set to the

set of diagonal positive definite matrices.

Lemma 3.5. (parallel sum for simultaneously diagonalizable matrices) Suppose A1, ..., An

are positive definite, and Ai “ P TDiP for i “ 1, ..., n, where P is orthogonal and D1, ..., Dn

are diagonal. Then

A1 : ... : An “ P T
pD1 : ... : DnqP (3.12)
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Lemma 3.6. (joint concavity for simultaneously diagonalizable matrices) Let D1, ..., Dn,

D11, ..., D
1
n be diagonal, positive definite matrices, and let P be an orthogonal matrix of the

same dimension. For t P r0, 1s:

P T
ptD1 ` p1´ tqD

1
1qP : ... : P T

ptDn ` p1´ tqD
1
nqP ě

tP T
pD1 : ... : DnqP ` p1´ tqP

T
pD11 : ... : D1nqP (3.13)

and sumpP TD1P : ... : P TDnP q is jointly concave over D1, ..., Dn.

Therefore, we will assume that each Vi is diagonal, and we will seek an extreme point of a

suitably defined convex subset of the positive definite diagonal matrices. Suppose that all

agents have the same beliefs about the returns of the combined firm, which implies that the

trace of each Vi is equal. We can set up an additive constraint on the diagonal entries by

setting a lower bound on each diagonal entry of Vi; we interpret this as setting a minimum

amount of uncertainty for each asset. Let rV sn denote the n-th diagonal entry of V .

Suppose trpViq “ Nσ2 ` T for i “ 1, ..., I, where σ2 ě 0, T ě 0, and rVisn ě σ2 for

i “ 1, ...I, n “ 1, ...N . We say that V is specialized in variance in asset n if all diagonal

entries of V are equal to σ2, except for rV sn which is equal to σ2 ` T .

Proposition 3.4. (maximization of dividend discount under trace constraint): The dividend

discount will be maximized when each Vi is specialized in variance for some asset, and each

asset has at least tN{Iu Vis that specialize in it, and no asset has more than tN{Iu` 1.

These results imply that the incentive to generate spinoffs depends on the degree of spe-

cialization among the investor community. When there is less overlap of information among

investor groups, the discount is larger.
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3.5 Discussion and Empirical Implications

We have shown that a diversification discount exists when different investor types have more

precise information about different assets, and that the discount is maximized (and therefore

the incentive for a spinoff is largest) when the population of investors ”specializes” in the

sense that there is minimum overlap in the types of assets that each investor type knows

more about. The results in this paper make predictions that can be tested empirically; we

list some of these predictions and how they might be tested.

First, spinoff and merger patterns are affected by the interests of the investor/analyst com-

munity. If investors form into groups focusing on a specific sector, industry, country, etc,

then a firm splitting up is more likely when it contains divisions that align with these group-

ings (and conversely, a merger is less likely). Furthermore, spinoffs whose businesses are

aligned with this grouping will provide greater abnormal returns than those that do not.

On the other hand, if there is no investor/analyst group following a particular sector, then

there will be little incentive to spin off business segments in this sector, even if the segment

is relatively independent of the rest of the firm.

Second, spinoffs of unrelated divisions should be more likely, and should return a higher

abnormal return, since divisions in unrelated industries or market sectors will likely be

the focus of different investor groups. Most other theoretical models of the diversification

discount also make this prediction; one possible way to distinguish the predictions of this

model from others is by comparing returns of spinoffs of unrelated divisions when there is

little investor attention in a particular sector, to when it is high.

Third, in contrast with some other models of spinoffs, the incentive to split comes solely

23



from investor behavior, with no necessary connection to management behavior or even firm

productivity. Thus, our model predicts spinoffs of divisions or assets that seem to be currently

adequately managed, if there is some investor group that would pay attention to it. For

example, in recent years it has become popular for companies to spin off their real estate

holdings into REITs, under the hypothesis that these assets were undervalued when held in

the original firm. Furthermore, spinoffs may generate abnormal returns, even if there is no

improvement in the actual productivity of the spinoff.

Fourth, if there is a time trend in the amount of investor interest in a specific sector, or

if there is a trend towards more investor specialization in general, then there should be a

corresponding trend in spinoffs. Interest in some specific sectors has varied over time (for

example; Internet stocks, ”social media” stocks, China stocks, etc). We can try to measure

the degree of investor or analyst specialization into distinct sectors, and compare with the

number and valuation of spinoffs in these sectors over time. Also, it seems that special-

ization of investors in general has been steadily increasing over time, due to improvements

in information technology and financial sophistication. We could check if there has been a

corresponding rise in spinoffs and valuations of all types over time.

In the next section, we empirically test our model’s prediction that the diversification dis-

count for a multi-segment firm is related to the degree of specialization among the investor

groups following that firm.
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4 Data and Empirical Methodology

Our model predicts a larger diversification discount when a firm is composed of two or more

segments, each followed by its own investor group, and different investor groups are more

specialized in their information (i.e. they pay more attention to their specific industry,

and less attention to other industries). In this section we present an empirical test of this

prediction, using the behavior of sell-side analysts as a way to measure investor specialization.

We collect data on US corporate spinoffs from 2001-2015, and compute the abnormal return

associated with each spinoff. Then, we regress abnormal return on measures of similarity

between industry categories. These measures include simple dummy variables indicating

when a parent and child firm are in different industries, but also a novel continuous measure

that is constructed from patterns of analyst reports. The idea is that if two industries have

many analysts in common, then there is little specialization between the investor communities

of these two industries, since the same group of people will be observing signals from both

industries. However, if two industries have few analysts in common, then specialization

between the investor communities is high, since signals from one industry will not be observed

by analysts following the other industry.

The basic timeline of a spinoff is as follows: first is the announcement date pADq, which

is generally the earliest date that the firm’s board of directors publicly announces that

they intend to spin off a segment of the firm into a separate, publicly traded company. If

the firm proceeds with the spinoff decision, then some time after the announcement date

(usually a period of several months), after regulatory approval has been obtained, there is

a declaration date on which the parent firm publicly announces that it will distribute stock

of the child company to the parent’s shareholders, to take place on the ex-date pEDq. The
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ex-date is usually the first date on which the child firm’s stock is publicly traded. In this

paper we will focus on abnormal returns over four periods: 1) pAD ´ 1, AD ` 1q, called the

announcement date (AnncDate) effect; 2) pAD ´ 1, ED ´ 1q, called the AnncDate-ExDate

effect; 3) pED ´ 1, EDq, called the ExDate effect; and 4) pED ´ 1, ED ` 30q, called the

ExDate 30-day effect.

4.1 Empirical Literature

Previous empirical papers examining the excess return from spinoffs include Chemmanur,

Krishnan, and Nandy (2014), Bhandari (2013), Burch and Nanda (2003), Krishnaswami and

Subramaniam (1999), Daley, Mehotra, and Sivakumar (1997), and Vijh (1994). Veld and

Veld-Merkoulova (2009) review 26 studies of spinoffs; they find that there is a consistent and

large positive effect on the announcement date. However, there is a mixed record for long-

run effects after the announcement date. Krishnaswami and Subramaniam (1999) and Daley,

Mehotra, and Sivakumar (1997) find that ”cross-industry” spinoffs, where the child has a

different 2-digit SIC code than its parent, have a significantly higher AnncDate effect; Desai

and Jain (1999) find higher AnncDate and ExDate effects for ”focus-increasing” spinoffs, one

measure of which is a different SIC code between parent and child. Bhandari (2013) finds a

larger ExDate effect for spinoffs where there is more disagreement among shareholders about

the prospects of the child firm, as measured by institutional holdings before and after the

spinoff.
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4.2 Data Sources

For data on US corporate spinoffs, we search the CRSP database for distributions with a

distribution code of 3763 or 3764 (indicating a tax-free equity distribution) between 2001

and 2015. For each observation, we do a manual search of news sources and company press

releases to obtain the announcement date; we also note whether the spinoff was simultaneous

with a merger or a combination of assets from other firms. From CRSP’s STOCKNAMES

database, we obtain the PERMCO and SIC code of both the parent and child firm. If the

SIC code is missing or has a value of 9999 (indicating an unknown industry), we next turn

to Compustat, and finally to a manual search of news and SEC filings. The SIC code then

determines the firm’s Fama-French 48-industry (henceforth FF48) classification (Fama and

French (1997)); we choose the 48-industry scheme because it is the most fine-grained.

We exclude the following cases from our spinoff dataset:

• if we cannot obtain the child’s SIC code from CRSP, Compustat, or a manual search.

• if the spinoff is simultaneous with a merger or combination with assets of other firms,

as determined by manual searching of news and press releases.

• if the parent and child firm have the same PERMCO. Thus, we exclude issues of

tracking stocks or new share classes.

• if the first trading date of the child firm’s PERMCO is more than 10 days before the

ex-date, or after the ex-date. This will exclude cases where the child firm was already

publicly traded, and hence not a true spinoff.

• if there is more than one parent PERMCO associated with the spinoff. This excludes
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cases where multiple parent firms distribute stock of the same child firm on the same

date.

• we allow observations with multiple spinoffs (more than one child PERMCO); however,

each of the child firms must satisfy the conditions above. The regressors are calculated

as a weighted average over each child firm, with the child’s market value relative to

the total market value of all child firms on the ex-date as the weight.4

In contrast with some of the literature, we do not exclude foreign firms or REITs.

Daily returns for firms with multiple PERMNOs are computed as the market value-weighted

average over all PERMNOs associated with the firm’s PERMCO. We note the parent

PERMCO’s total market value on the day before the ex-date, and the child PERMCO’s

total market value on the first trading day where it is nonzero. This will be used to calculate

the parent/child market value ratio of the spinoff.

Data on analyst forecasts from 2001-2016 comes from the IBES detail file. We attempt to

link CRSP PERMNO to IBES ticker, if possible, and use that to determine the SIC and

FF48 code for each firm in the IBES data.

4.3 An analyst-based measure of industry similarity

Previous papers on spinoffs have used a simple dummy variable (e.g. same 2-digit or 3-

digit SIC code) to indicate whether a child firm is in a different industry from its parent;

in this paper we go beyond a binary indicator to construct a novel continuous measure

4Our dataset has four observations of multiple spinoffs: IAC Interactive in 2008, Cendant in 2006, Tyco
in 2007, and Temple Inland, Inc. in 2007. Excluding these observations has little effect on our results.

28



of distance between industry categories (FF48 classifications), based on patterns of sell-

side analyst behavior. The idea of using analyst behavior to classify firms was used in

Kaustia and Rantala (2015) to identify ”peer firms” of a company; the hope is that this

can be more accurate than relying on pre-determined categories, since analysts are able

to continually evaluate firms’ actual behavior in real time. In the corporate diversification

literature, Hoberg and Phillips (2010) constructed a continuous measure of similarity between

firms using text-based analysis of product descriptions in 10-K statements. This measure

of similarity can be seen as reflecting the company’s point of view, while our measure is

oriented towards the beliefs of investors.

Our measure is an application of a graph-theoretic method used in network and link analysis

(Fouss, Pirotte, Renders, and Saerens (2007), Fouss, Saerens, and Shimbo (2016) Ch. 2)5

Suppose there are I firms and N analysts in the economy, and the set of firms 1, ...I is

partitioned into J disjoint sets, S1, ...SJ , each representing an ”industry” classification. We

say that an analyst a P 1, ..., N ”follows” firm i if a issues at least one forecast for firm i,

and ”follows” an industry j P 1, ..., J if a issues at least one forecast for a firm in industry

j. Let Aj denote the set of all analysts who follow industry j; we will call this the ”analyst

community” of industry j. We construct a graph that encodes the relationships between

industries and analysts; then, we compute a measure of similarity between industry nodes.

The nodes in our graph are the industries 1, ...J and analysts 1, ..., N . We add an edge

between industry j and analyst a if a follows j; the weight of the edge is the number of

firms in industry j that analyst a follows. Then, we compute the commute-time distance

(henceforth CTD) between each pair of nodes i, j in the graph; this is defined as the average

5For example, given a database of movies, people, and information on who has watched what, a set of
recommended movies for a given person i can be constructed as the set of unwatched movies that are most
similar to i, in some sense.
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number of steps that a random walker, starting in node i, takes until it enters j for the

first time, and returns back to i.6 This provides a measure of similarity between any node

in the graph; the advantage of this method is that it uses global information, and not just

information local to i or j. We extract the pairwise distances between industry nodes 1...J ;

a lower distance indicates a higher degree of similarity. See Appendix 6.1 for an example of

calculating these similarity measures.

Consider two analyst communities A1, A2 that follow industries I1, I2. If A1 and A2 have

significant overlap (i.e. there are many analysts who follow both I1 and I2), then it is more

likely that a signal about the future prospects of I1 will be observed by analysts in A2,

and vice versa; thus, A1 and A2 would have a low degree of information specialization, in

the framework of our model. In the graph encoding relationships between industries and

analysts, industries with many analysts in common will have many paths connecting them,

since each ”follow” by an individual analyst a of industry I results in an edge connecting

nodes a and I. The CTD measures the ”bandwidth” of the total set of connections, direct

and indirect, between two nodes in a graph. If we assume that more connections between

two industries via common analysts is correlated with more common signals being observed

by, and more information being transmitted between, investor groups that follow those two

industries, then the CTD is one way to measure the information specialization between

investor groups.

We calculate this distance between each pair of FF48 industry categories (except code 48)

using IBES analyst data for each year from 2001 to 2015. Firms with an erroneous or missing

SIC code will be coded as 48, which is the ”Other” category used for firms that don’t fit into

6The commute-time distance can also be thought of as the resistance between two nodes in an electrical
network, where each edge has a resistance inversely proportional to its weight.
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any other categorization; this results in a lot of unrelated firms ending up in this category.

To avoid erroneously grouping these firms together, we drop IBES analyst reports for firms

classified as code 48. It may be possible for the CTD between two nodes to be infinite,

if they are unconnected in the graph representation. If this occurs, we replace it with two

times the largest CTD value for that year. Finally, we transform the distance into its z-score,

calculated using all spinoff observations, to facilitate interpretation.

4.4 Empirical Methodology

Our main regression specification is

Ri “ α ` β1di ` β2Y eari ` β3Xi ` ei (4.1)

where Ri is the abnormal return, di is a measure of dissimilarity between parent and child

industries, yeari is the year of the ex-date, and X is a vector of control variables. We include

year as a regressor to test the hypothesis that spinoff effects have been decreasing over time.

Abnormal returns are calculated using a market model estimated over a 155-day period

ending 45 days before the announcement date; the CRSP value-weighted index is used for

the market portfolio.7

7Let Rit denote the daily simple return of security i at time t. We estimate the market model with the
equation

Rit “ αi ` βiRmt ` εit

The abnormal return at time t is estimated as ε̂it “ rit ´ α̂i ´ β̂irmt, and the cumulative abnormal over
a period t “ 1, ..., T is the

ř

ε̂it. Alternative methods for computing the abnormal return include: (i)
estimating the market model with log returns instead of simple returns; (ii) calculating buy-and-hold returns
rather than cumulative abnormal returns. We found very little difference between these methods for the
short-horizon AnncDate and ExDate effects, but larger differences for the longer-horizon ExDate 30-day
effect and especially the AnncDate-ExDate effect, which may have a horizon longer than a year.
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For measures of industry dissimilarity, we use: dummy variables indicating that parent and

child have the same 2-digit SIC, 3-digit SIC, or same FF48, and our continuous distance

measure presented above. Following Bhandari (2013), for the control variables, we include

a dummy indicating whether the parent was in the S&P 500. We calculate the excess

share turnover for the parent firm during the observed trading period relative to a reference

period, which is either pAD´ 90, AD´ 31q for the AnncDate and AnncDate-ExDate effects,

or pED ` 31, ED ` 90q for the ExDate and ExDate 30-day effects. If the parent firm’s

PERMCO has multiple PERMNOs, we calculate the value-weighted turnover using all the

parent firm’s PERMNOs. We do not include variables related to productivity or investment;

since we are only examining returns over a very short time period, these factors should not

come into play. Following Bhandari (2013), we also examine a subset of spinoffs where the

parent/child market value ratio is less than 25 and 10; we would expect any spinoff effects

to be larger when the child firm is relatively larger in market value compared to the parent.

4.5 Empirical Results

Tables 1, 2, and 3 show summary statistics for the entire sample of spinoffs, and for two

restricted samples where the parent/child market value ratio is limited to be at most 25

and 10, respectively. Consistent with previous studies, there is a positive mean AnncDate

and ExDate effect. Our AnncDate and ExDate effects are 2.73% and 1.54%, respectively,

which are somewhat less than reported in previous studies (for comparison, Vijh (1994)

reports effects of 2.90% and 3.03%, while Bhandari (2013) reports effects of 3.28% and

2.38%, respectively). As expected, when the sample is restricted to spinoffs with relatively

larger child firms, the average spinoff effects become larger. The AnncDate-ExDate effect
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goes from 3.45% in the full sample, to 5.49% in the most restricted sample. The ExDate

30-day effect goes from negative and close to zero in full sample, to 0.542% (about one

third of the ExDate effect) in the most restricted sample. Note, however, that our estimates

of abnormal return become more sensitive to how the market model is estimated and how

holding period returns are calculated, as the holding period increases. Therefore, we devote

the most attention to the AnncDate and ExDate effects.

Table 4 reports regression results for the AnncDate effect (AD ´ 1 to AD ` 1). Consistent

with previous studies, there is a positive, significant abnormal return on the announcement

date; however, in contrast to those results, this effect is not associated with different SIC

or FF48 codes between parent and child. Our CTD measure is significant at the 1% level

in all samples; a 1 standard deviation increase in CTD is associated with 0.785 to 1.0 more

percentage points of abnormal return, with larger coefficients found in the more restricted

samples. Year has no significant effect, indicating that in our data at least, there does not

seem to be any reduction in the AnncDate effect over time.

Table 5 reports results for AnncDate-ExDate effect (AD ´ 1 to ED ´ 1). None of our

regressors are significant.

Table 6 reports results for the ExDate effect (ED ´ 1 to ED). Once again, consistent

with previous studies, the effect is positive and significant, although somewhat smaller in

magnitude. Year is negative and significant at the 1% level in all specifications, indicating

that the ExDate effect has clearly decreased over time.

Table 7 reports results for the ExDate 30-day effect (ED´1 to ED`30). Year is significant

at the 10% level in the most restricted sample; none of our industry similarity measures are

significant.
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4.6 Discussion

Our regression results for the AnncDate and ExDate effects are broadly consistent with

previous studies, finding a positive and significant mean effect. Our measure of industry

similarity has the expected sign and is significant at the 1% level for the AnncDate effect. The

coefficient estimates of our similarity measure is economically significant, with a 1 standard

deviation change in the similarity measure associated with 0.785´1.0 more percentage points

in abnormal return, which is a large fraction of the total spinoff effect. We can conceive of

a spinoff effect that require separate stocks to be actually traded, and an effect that does

not. For example, if an investor believes that an announced spinoff will likely be completed,

and is willing to wait until the spinoff is completed, then he can buy the parent stock on the

announcement date, resulting in the AnncDate effect. On the other hand, if an investor is

interested in only one of the parent or child stocks, and is not willing to buy the parent stock

before the spinoff takes place (perhaps due to transaction costs, or institutional investor

”style” guidelines), then this will result in an effect that only manifests at the ex-date (see

Bhandari (2013) for an example of one such mechanism). Our measure appears to capture

an aspect of industry similarity that investors act upon when a spinoff is announced. Finally,

as a separate result, we find that spinoff effects on or after the ex-date have been decreasing

over time. This may be due to decreasing transaction costs, since transaction costs make it

more costly to buy the parent stock before the ex-date, and then sell one of the parent or

child stocks after the spinoff is completed.
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5 Conclusion

We have shown that in the CARA-Gaussian framework, a diversification discount can arise

with a specific type of heterogeneity in beliefs: when different investors have more precise

information about different assets. We interpret this as specialization in information about

specific sectors or industries. In noisy REE models with learning from prices, an expected

discount exists. The discount (and therefore the incentive for a spinoff) increases with the

degree of specialization among the population of investors. Our result depends only on het-

erogeneity of investor beliefs, and does not require ”noise traders” or bounded rationality

by investors. Furthermore, we have derived results in a general multi-investor, multi-asset

setting. To empirically test our model, we develop a novel continuous measure of industry

similarity based on sell-side analyst behavior, using the assumption that if two industries

have many analysts in common, then the investor groups following those two industries are

likely to be less specialized in information. We find that our measure of industry similar-

ity has a positive, strongly significant association with a spinoff’s abnormal returns on its

announcement date, providing empirical support for our theory.

For future research, we can ask what kind of financial structure will maximize the total

market value for the firm, given its collection of assets and given the beliefs in the population.

We can also examine the effect of investor heterogeneity in risk aversion and in the means

of beliefs about asset returns.
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Table 1: Summary Statistics for all spinoffs

count mean std min 25% 50% 75% max
AD ´ 1 to AD ` 1 178 2.731 5.799 -28.042 -0.239 1.531 5.165 25.299
AD ´ 1 to ED ´ 1 177 3.458 43.509 -180.763 -14.904 2.150 17.351 274.544
ED ´ 1 to ED 188 1.543 4.190 -12.017 -0.639 1.086 2.950 32.270
ED ´ 1 to ED ` 30 188 -0.001 13.150 -48.091 -6.411 0.138 5.922 60.083
Parent/child market value ratio 188 7.330 12.129 0.000 1.315 3.002 7.966 83.267
Same 2-digit SIC 188 0.465 0.499 0 0 0 1 1
Same 3-digit SIC 188 0.338 0.473 0 0 0 1 1
Same FF48 188 0.504 0.499 0 0 0.746995 1 1
Commute-time distance 185 262.930 609.868 0 0 0.000 317.585 6036.994
Parent in SP500 188 0.356 0.480 0 0 0 1 1
Parent’s average turnover %, AD ´ 90 to AD ´ 31 180 0.008 0.005 0.000 0.004 0.007 0.009 0.033
Parent’s average turnover %, ED ` 31 to ED ` 90 185 0.009 0.007 0.000 0.005 0.008 0.011 0.045
Parent AnncDate Excess Turnover Ratio 180 2.935 2.764 0.013 1.078 2.016 3.643 17.867
Parent AnncDate-ExDate Excess Turnover Ratio 174 1.192 0.452 0.338 0.896 1.101 1.421 3.137
Parent ExDate Excess Turnover Ratio 183 2.955 2.500 0.400 1.382 2.089 3.766 18.095
Parent ExDate 10-day Excess Turnover Ratio 183 1.670 0.944 0.544 1.113 1.449 2.002 8.713
Parent ExDate 30-day Excess Turnover Ratio 183 1.360 0.540 0.408 1.031 1.253 1.608 4.704

This table reports descriptive statistics for the full sample of spinoffs.
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Table 2: Summary Statistics for spinoffs with parent/child market value ratio ď 25

count mean std min 25% 50% 75% max
AD ´ 1 to AD ` 1 170 2.792 5.916 -28.042 -0.256 1.609 5.203 25.299
AD ´ 1 to ED ´ 1 169 3.848 44.441 -180.763 -14.904 2.677 19.704 274.544
ED ´ 1 to ED 180 1.570 4.262 -12.017 -0.639 1.129 2.968 32.270
ED ´ 1 to ED ` 30 180 0.070 13.321 -48.091 -6.330 0.269 5.922 60.083
Parent/child market value ratio 180 5.289 6.052 0.000 1.251 2.832 6.808 24.755
Same 2-digit SIC 180 0.464 0.499 0 0 0 1 1
Same 3-digit SIC 180 0.331 0.470 0 0 0 1 1
Same FF48 180 0.499 0.499 0 0 0.3969563 1 1
Commute-time distance 177 265.713 620.137 0 0 0.000 317.585 6036.994
Parent in SP500 180 0.339 0.475 0 0 0 1 1
Parent’s average turnover %, AD ´ 90 to AD ´ 31 172 0.008 0.005 0.000 0.004 0.007 0.010 0.033
Parent’s average turnover %, ED ` 31 to ED ` 90 177 0.010 0.007 0.000 0.005 0.008 0.012 0.045
Parent AnncDate Excess Turnover Ratio 172 3.003 2.803 0.013 1.150 2.117 3.810 17.867
Parent AnncDate-ExDate Excess Turnover Ratio 166 1.194 0.459 0.338 0.891 1.103 1.430 3.137
Parent ExDate Excess Turnover Ratio 175 3.023 2.531 0.400 1.435 2.106 3.831 18.095
Parent ExDate 10-day Excess Turnover Ratio 175 1.688 0.960 0.544 1.113 1.459 2.015 8.713
Parent ExDate 30-day Excess Turnover Ratio 175 1.368 0.550 0.408 1.028 1.266 1.617 4.704

This table reports descriptive statistics for the sample of spinoffs where the parent/child market value is less than 25.
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Table 3: Summary Statistics for spinoffs with parent/child market value ratio ď 10

count mean std min 25% 50% 75% max
AD ´ 1 to AD ` 1 147 3.149 6.271 -28.042 -0.195 2.000 6.207 25.299
AD ´ 1 to ED ´ 1 146 5.498 46.762 -180.763 -14.048 3.944 21.812 274.544
ED ´ 1 to ED 156 1.760 4.497 -12.017 -0.582 1.267 3.425 32.270
ED ´ 1 to ED ` 30 156 0.542 13.346 -48.091 -6.009 0.704 6.603 60.083
Parent/child market value ratio 156 3.219 2.714 0.000 1.178 2.327 4.886 9.998
Same 2-digit SIC 156 0.478 0.499 0 0 0 1 1
Same 3-digit SIC 156 0.336 0.472 0 0 0 1 1
Same FF48 156 0.505 0.499 0 0 0.7469947 1 1
Commute-time distance 154 251.182 606.813 0 0 0.000 317.407 6036.994
Parent in SP500 156 0.288 0.455 0 0 0 1 1
Parent’s average turnover %, AD ´ 90 to AD ´ 31 149 0.008 0.006 0.000 0.004 0.007 0.010 0.033
Parent’s average turnover %, ED ` 31 to ED ` 90 153 0.010 0.007 0.000 0.005 0.008 0.012 0.045
Parent AnncDate Excess Turnover Ratio 149 3.221 2.924 0.013 1.184 2.262 4.326 17.867
Parent AnncDate-ExDate Excess Turnover Ratio 143 1.219 0.482 0.338 0.889 1.112 1.463 3.137
Parent ExDate Excess Turnover Ratio 151 3.290 2.618 0.400 1.528 2.406 4.034 18.095
Parent ExDate 10-day Excess Turnover Ratio 151 1.783 0.993 0.544 1.201 1.536 2.062 8.713
Parent ExDate 30-day Excess Turnover Ratio 151 1.423 0.566 0.408 1.055 1.318 1.665 4.704

This table reports descriptive statistics for the sample of spinoffs where the parent/child market value is less than 10.
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Table 4: AnncDate effect (AD ´ 1 to AD ` 1)

All spinoffs Mktval ratio ¡= 25 Mktval ratio ¡= 10
Year 0.049 0.049 0.043 0.091 0.114 0.114

(0.114) (0.114) (0.111) (0.119) (0.129) (0.149)
Parent in SP500 -1.837 ** -1.839 ** -1.860 ** -2.017 ** -2.246 ** -2.278 **

(0.814) (0.807) (0.825) (0.840) (0.900) (1.108)
Parent Excess
Turnover Ratio

0.642 ** 0.635 ** 0.632 ** 0.639 ** 0.640 ** 0.635 **

(0.265) (0.266) (0.264) (0.264) (0.263) (0.270)
Same 2-digit SIC 0.388

(0.750)
Same 3-digit SIC 0.132

(0.783)
Same FF48 -0.746

(0.793)
Commute-time dis-
tance z-score

0.785 *** 0.820 *** 1.000 ***

(0.301) (0.304) (0.289)
N 178 178 178 175 167 145
Adjusted R2 0.091 0.090 0.094 0.109 0.109 0.098

Robust standard deviations are shown in parentheses. ***, **, and * indicate significance at the 1%, 5%, and
10% level, respectively. Parent Excess Turnover Ratio is the ratio of the average value-weighted turnover in the
given time period, to the average value-weighted turnover in a reference period of AD ´ 90 to AD ´ 31.
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Table 5: AnncDate-ExDate effect (AD ´ 1 to ED ´ 1)

All spinoffs Mktval ratio ď 25 Mktval ratio ď 10
Year -0.718 -0.692 -0.733 -0.578 -0.606 -0.663

(0.785) (0.783) (0.788) (0.779) (0.838) (0.944)
Parent in SP500 -1.816 -1.133 -1.880 -2.605 -2.264 0.952

(6.075) (5.977) (6.098) (6.199) (6.554) (7.325)
Parent Excess
Turnover Ratio

-5.005 -4.673 -5.086 -5.193 -5.541 -5.795

(6.592) (6.653) (6.591) (6.795) (6.941) (7.283)
Same 2-digit SIC 0.140

(6.363)
Same 3-digit SIC 6.972

(6.967)
Same FF48 -2.054

(6.499)
Commute-time dis-
tance z-score

2.290 2.132 3.305

(3.024) (3.108) (2.910)
N 174 174 174 172 164 142
Adjusted R2 -0.016 -0.009 -0.015 -0.012 -0.014 -0.013

Robust standard deviations are shown in parentheses. ***, **, and * indicate significance at the
1%, 5%, and 10% level, respectively. Parent Excess Turnover Ratio is the ratio of the average value-
weighted turnover in the given time period, to the average value-weighted turnover in a reference period
of AD ´ 90 to AD ´ 31.
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Table 6: ExDate effect (ED ´ 1 to ED)

All spinoffs Mktval ratio ď 25 Mktval ratio ď 10
Year -0.257 *** -0.257 *** -0.259 *** -0.251 *** -0.269 *** -0.283 ***

(0.072) (0.072) (0.072) (0.073) (0.077) (0.087)
Parent in SP500 -0.537 -0.532 -0.552 -0.553 -0.527 -0.709

(0.558) (0.553) (0.554) (0.553) (0.566) (0.643)
Parent Excess
Turnover Ratio

0.228 * 0.236 * 0.220 * 0.227 * 0.217 * 0.185

(0.126) (0.126) (0.126) (0.126) (0.127) (0.130)
Same 2-digit SIC -0.525

(0.600)
Same 3-digit SIC -0.403

(0.618)
Same FF48 -0.907

(0.605)
Commute-time dis-
tance z-score

0.085 0.090 0.175

(0.211) (0.223) (0.282)
N 183 183 183 180 172 149
Adjusted R2 0.087 0.085 0.095 0.081 0.086 0.083

Robust standard deviations are shown in parentheses. ***, **, and * indicate significance at the 1%, 5%, and 10%
level, respectively. Parent Excess Turnover Ratio is the ratio of the average value-weighted turnover in the given
time period, to the average value-weighted turnover in a reference period of ED ` 31 to ED ` 90.
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Table 7: ExDate 30-day effect (ED ´ 1 to ED ` 30)

All spinoffs Mktval ratio ď 25 Mktval ratio ď 10
Year -0.325 -0.324 -0.323 -0.319 -0.385 -0.459

(0.244) (0.244) (0.244) (0.249) (0.266) (0.292)
Parent in SP500 3.085 3.123 3.028 2.954 3.322 3.757

(2.033) (1.987) (2.029) (2.051) (2.183) (2.399)
Parent Excess
Turnover Ratio

3.283 ** 3.191 ** 3.221 ** 3.148 ** 3.321 ** 2.663

(1.481) (1.495) (1.495) (1.551) (1.569) (1.634)
Same 2-digit SIC 0.988

(1.922)
Same 3-digit SIC 1.312

(2.049)
Same FF48 0.219

(1.900)
Commute-time dis-
tance z-score

0.023 0.055 0.912 *

(1.116) (1.130) (0.539)
N 183 183 183 180 172 149
Adjusted R2 0.014 0.015 0.013 0.010 0.016 0.024

Robust standard deviations are shown in parentheses. ***, **, and * indicate significance at the 1%, 5%, and
10% level, respectively. Parent Excess Turnover Ratio is the ratio of the average value-weighted turnover in
the given time period, to the average value-weighted turnover in a reference period of ED` 31 to ED` 90.

6 Appendix

6.1 Example of Analyst-Based Industry Similarity Measure

Suppose there are two industries I1, I2 and four firms f1, f2, f3, f4, with I1 “ tf1, f2u and I2 “

tf3, f4u, and three analysts a1, a2, a3. Analyst a1, a2, a3 each follow two firms: tf1, f2u, tf2, f3u, and

tf3, f4u respectively. Then, the ”analyst community” following industries I1, I2 are A1 “ ta1, a2u

and A2 “ ta2, a3u respectively. Both A1 and A2 have a total of four firms ”followed”, aggregated

over all analysts in each ”analyst community”. This market is shown in Figure 2.
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f2f1 f3 f4

I1 I2

a1 a2 a3

Figure 2: Example of industries, firms, and analysts.

Now, consider the graph representation of the same market, shown in Figure 3. There are two

”industry” nodes I1, I2 and three ”analyst” nodes, a1, a2, a3. Edges pI1, a1q and pI2, a3q have a

weight of 2; edges pI1, a2q and pI2, a2q have a weight of 1. Let L denote the Laplacian matrix of

this graph, and L` denote the Moore-Penrose pseudoinverse of L; then the CTD between nodes

i, j is given by Eq. 5 in Fouss, Pirotte, Renders, and Saerens (2007):

npi, jq “ VGpei ´ ejq
TL`pei ´ ejq (6.1)

where VG, the ”volume” of the graph, is the sum of the degrees of all nodes, and ei is the ith column

of the identity matrix I with a dimension equal to the total number of nodes. For this example,

let the nodes of the graph be arranged as follows: I1, a1, a2, I2, a3. Then the matrix of CTDs is

given in Table 8. The distance between nodes I1, I2 is 24; the distance between nodes a1, a3 is 36.
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I1 I2

a1 a2 a3

2
2

1 1

Figure 3: Graph for the market shown in Figure 2

0 6 12 24 30
6 0 18 30 36

12 18 0 12 18
24 30 12 0 6
30 36 18 6 0

Table 8: Commute-time distances for the graph in Figure 3. The order of the nodes is: I1,
a1, a2, I2, a3.

6.2 Proofs

Lemma 3.1 (monotonicity and joint concavity).

Proof. The case n “ 2 is proved in Bhatia (2007), Theorem 4.1.1. We will prove the cases n ą 2

by induction. Note that parallel sum is associative: A1 : ... : Ak : Ak`1 “ pA1 : ... : Akq : Ak`1.

Suppose that monotonicity holds for n “ k, and A1 ěL A
1
1, ..., Ak`1 ěL A

1
k`1. Then

pA1 : ... : Akq : Ak`1 ěL pA
1
1 : ... : A1kq : A1k`1 ñ (6.2)

A1 : ... : Ak : Ak`1 ěL A
1
1 : ... : A1k : A1k`1 (6.3)
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Suppose that joint concavity holds for n “ k. Then for t P r0, 1s,

ptA1 ` p1´ tqA
1
1q : ... : ptAk ` p1´ tqA

1
kq : ptAk`1 ` p1´ tqA

1
k`1q (6.4)

ěL ptpA1 : ... : Akq ` p1´ tqpA
1
1 : ... : A1kqq : ptAk`1 ` p1´ tqA

1
k`1q (6.5)

ěL tpA1 : ... : Akq : Ak`1 ` p1´ tqpA
1
1 : ... : A1kq : A1k`1 (6.6)

“ tpA1 : ... : Ak`1q ` p1´ tqpA
1
1 : ... : A1k`1q (6.7)

Therefore, monotonicity and joint concavity hold for all n ě 2.

Definition 6.1. Let Mn denote the set of all nˆn real-valued matrices. A linear map Φ : Mn ÑMk

is positive if ΦpAq is positive semidefinite whenever A is positive semidefinite.

Lemma 6.1. (inequality of positive linear map of parallel sum): Let Φ be any positive linear map

on Mn, and let A1, ...An be positive semidefinite. Then ΦpA1 : ...Anq ďL ΦpA1q : ... : ΦpAnq.

Proof. The case n “ 2 is proved in Bhatia (2007), Theorem 4.1.5. Suppose it holds for n “ k.

Then

ΦpA1q : ... : ΦpAkq ěL ΦpA1 : ... : Akq (6.8)

pΦpA1q : ... : ΦpAkqq : ΦpAk`1q ěL ΦpA1 : ... : Akq : ΦpAk`1q (6.9)

ΦpA1q : ... : ΦpAkq : ΦpAk`1q ěL ΦpA1 : ... : Akq : ΦpAk`1q (6.10)

by associativity, and the right hand side is ěL ΦppA1 : ... : Akq : Ak`1q “ ΦpA1 : ... : Ak : Ak`1q.

Therefore, it holds for all n ě 2.

Lemma 3.2 (inequality for sum/trace).

Proof. sum and tr are positive linear maps (Bhatia (2007) Example 2.2.1). Therefore, Lemma 6.1
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applies.

Lemma 3.3 (joint concavity of sum/trace of parallel sum).

Proof. First, we show that sum and tr are monotone. For tr, see Bernstein (2009), Corollary

8.4.10. For sum, let e denote a column vector of ones; sumpAq “ eTAe. By the definition of

positive semidefinite, A ěL B ñ eT pA´Beq ě 0 ñ eTAe ě eTBeñ sumpAq ě sumpBq.

By joint concavity of the parallel sum, for t P r0, 1s:

ptA1 ` p1´ tqA
1
1q : ... : ptAn ` p1´ tqA

1
nq ěL tpA1 : ... : Anq ` p1´ tqpA

1
1 : ... : A1nq (6.11)

trpptA1 ` p1´ tqA
1
1q : ... : ptAn ` p1´ tqA

1
nqq ěL trptpA1 : ... : Anq ` p1´ tqpA

1
1 : ... : A1nqq (6.12)

“ ttrpA1 : ... : Anq ` p1´ tqtrpA
1
1 : ... : A1nq (6.13)

The proof is identical for sum.

Lemma 6.2 (variance of sum of variables). Suppose X̃ “ px̃1, ..., x̃nq is a n-dimensional random

vector with variance A, diagonalized as A “ P TDP , with P an orthornormal matrix whose rows are

the eigenvectors of A and D a diagonal matrix containing the eigenvalues of A. Then sumpAq “

V arp
ř

i x̃iq “
ř

ip
ř

j Pi,jq
2Di,i.

Proof. Let Ỹ “ pỹ1, ..., ỹnq „ Np0, Inq. Then X̃ “ P´1D
1
2 Ỹ and x̃i “

řn
j“1 Pj,ipDj,jq

1
2 ỹj , and

sumpAq “ V arp
ř

i x̃iq “
ř

ip
ř

j Pi,jq
2Di,i.

Lemma 3.4 (equality of sum/trace of parallel sum).

Proof. For tr, applying Lemma 3.5:

trpA1 : ... : Anq “ trpP TD1P : ... : P TDnP q “ trpP TD1 : ... : DnP q (6.14)
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“ trpD1 : ... : DnPP
T q “ trpα1D : ... : αnDq “ pα1 : ... : αnqtrpDq (6.15)

trpA1q : ... : trpAnq “ trpP TD1P q : ... : trpP TDnP q “ trpD1PP
T q : ... : trpDnPP

T q (6.16)

“ trpD1q : ... : trpDnq “ trpα1Dq : ... : trpαnDq “ pα1 : ... : αnqtrpDq (6.17)

For sum, applying Lemma 6.2:

sumpA1 : ... : Anq “ sumpP TD1P : ... : P TDnP q “ sumpP TD1 : ... : DnP q (6.18)

“
ÿ

i

p
ÿ

j

Pi,jq
2pD1 : ... : Dnqi,i “

ÿ

i

p
ÿ

j

Pi,jq
2pα1 : ... : αnqDi,i (6.19)

sumpA1q : ... : sumpAnq “ sumpP TD1P q : ... : sumpP TDnP q (6.20)

“
ÿ

i

p
ÿ

j

Pi,jq
2pD1qi,i : ... :

ÿ

i

p
ÿ

j

Pi,jq
2pDnqi,i (6.21)

“
ÿ

i

p
ÿ

j

Pi,jq
2α1Di,i : ... :

ÿ

i

p
ÿ

j

Pi,jq
2αnDi,i (6.22)

“
ÿ

i

p
ÿ

j

Pi,jq
2pα1 : ... : αnqDi,i (6.23)

Proposition 3.2 (no discount with common eigenvectors and eigenvalues are equal up to scale factor).

Proof.

Pcombined “ psumpα1P
TDP q : ... : sumpαIP

TDP qq

˜

I
ÿ

i

sumpαiP
TDP q´1sumpµiq ´ 1

¸

(6.24)

“ pα1 : ... : αIqsumpP TDP q

˜

sumpP TDP q´1
I
ÿ

i

α´1
i sumpµiq ´ 1

¸

(6.25)

“ pα1 : ... : αIqp
I
ÿ

i

α´1
i sumpµiqq ´ pα1 : ... : αIqsumpP TDP q (6.26)
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Pseparate “ sum

˜

pα1P
TDP : ... : αIP

TDP q

˜

I
ÿ

i“1

αiP
TDPµi

¸¸

´ sumpα1P
TDP : ... : αIP

TDP q

(6.27)

“ pα1 : ... : αIqsum

˜

I
ÿ

i“1

α´1
i µi

¸

´ pα1 : ... : αIqsumpP TDP q (6.28)

These two expressions are equal, since the first term in both expressions is simply
řI
i

řN
n α

´1
i µin.

Therefore, there is no discount or premium.

Lemma 3.5 (parallel sum for simultaneously diagonalizable matrices).

Proof. Since P is orthogonal, P T “ P´1. The eigenvectors of A´1 are the same as A.

A1 : ... : An “ ppP
TD1P q

´1 ` ...` pP TDnP q
´1q´1 (6.29)

“ pP TD´1
1 P ` ...` P TD´1

1 P q´1 “ pP T pD´1
1 ` ...`D´1

n qP q
´1 (6.30)

“ P T pD´1
1 ` ...`D´1

n q
´1P “ P T pD1 : ... : DnqP (6.31)

Lemma 3.6 (joint concavity for simultaneously diagonalizable matrices).

Proof. The left hand side is equal to tP TD1P ` p1 ´ tqP TD11P : ... : tP TDnP ` p1 ´ tqP TD1nP .

The right hand side is equal to tpP TD1P : ... : P TDnP q ` p1 ´ tqpP TD11P : ... : P TD1nP q. The

results follow from Lemma 3.1 and Lemma 3.3.

To prove Proposition 3.4 (maximization of dividend discount under trace constraint), we first

establish two lemmas.
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Lemma 6.3. (convexity of weighted harmonic mean): Suppose x, y P R, x ą y ą 0. For t P r0, 1s,

let hpt;x, yq denote the weighted harmonic mean of x and y:

hpt;x, yq “

ˆ

1´ t

x
`
t

y

˙´1

(6.32)

Then hpt;x, yq is strictly convex in t.

Proof. As t goes from 0 to 1, hpt;x, yq goes from y to x. The first and second derivatives of hpt;x, yq

are:

Bh

Bt
“

xpx´ yqy

pp1´ tqx` tyq2
,
B2h

Bt2
“

2xpx´ yqy

pp1´ tqx` tyq3
(6.33)

The second derivative is always positive, so hpt;x, yq is strictly convex.

Lemma 6.4. Suppose x, y P R, x ą y ą 0, and let N ě 2 be an integer. For n P 0...N , let

Hpn;x, yq denote

Hpn;N, x, yq “ x : ... : x
looomooon

n times

: y : ... : y
looomooon

N´n times

(6.34)

“

ˆ

n

x
`
N ´ n

y

˙´1

(6.35)

Then Hpn` 1;N, x, yq ´Hpn;N, x, yq, for n P 0...N ´ 1, is increasing in n.

Proof. This follows from the fact that Hpn;N, x, yq “ hpn{N ;x, yq and strict convexity of hpt;x, yq.

Proposition 3.4 (maximization of dividend discount under trace constraint).

Proof. Let vin ` σ2 “ rVisn, the n-th diagonal entry of Vi. We wish to find the extreme points of
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the feasible set defined by the constraints

N
ÿ

n“1

pvin ` σ
2q “ Nσ2 ` T, vin ě 0 for i “ 1, ..., I, n “ 1, ..., N (6.36)

For each i, this defines a N -dimensional simplex whose extreme points are where all vin’s are zero

except for one, which is equal to T . Each of these extreme points corresponds to a diagonal matrix

where all diagonal entries are σ2 except for one, which is equal to σ2 ` T , i.e. a matrix specialized

in variance for some asset.

The feasible set of the joint problem is an I-way Cartesian product of convex sets, therefore convex.

Its extreme points are an I-way Cartesian product of the extreme points of the individual feasible

sets. Suppose for asset n “ 1, ..., N , there are kn matrices specialized in that asset. Then

sumpV1 : ... : VIq “
N
ÿ

n“1

Hpkn; I, σ2 ` T, σ2q (6.37)

Suppose we reorder the assets such that the kn’s are in descending order, and suppose there exists

an asset m such that km ă k1 ´ 1. If we transfer the specialization of one of the matrices from

asset 1 to asset m, this sum changes by the amount

Hpkm ` 1; I, σ2 ` T, σ2q ´Hpkm; I, σ2 ` T, σ2q

´ pHpk1; I, σ2 ` T, σ2q ´Hpk1 ´ 1; I, σ2 ` T, σ2qq (6.38)

which results in a decrease, by Lemma 6.4. Therefore, the sum is minimized when it is no longer

possible to decrease the maximum kn, and the proposition is proved.
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