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Abstract

We present a model of an industry with a dynamic, monopoly financial firm and
an OLG population of depositors. The firm is a special case of the banking firm in
Carpio (2011): it is a bank without a lending business, i.e. a Ponzi scheme. The firm
offers an interest rate on deposits; depositors are forward-looking and take the interest
rate and bank risk as given, and choose how much to save using simple mean-variance
preferences. Interest rates, financial risk, and quantities of credit are endogenous. We
solve the model numerically through value function iteration. Numerical experiments
show that an equilibrium with nonzero savings can exist if depositor risk aversion and
population growth uncertainty is not too high; bank failure may occur optimally in finite
time.

1 Introduction

The financial crisis of 2007-2009 demonstrated that financial intermediaries play a critical,
if not yet well-understood, role in the economy. When economists want to understand a
phenomenon, they turn to their models; many of our workhorse economic models, however,
are not well suited for analyzing banks and other intermediaries. For example, the standard
general equilibrium model has no role for banks; the standard representative agent macro
model has no role for quantities of debt.

In Carpio (2011) we presented a dynamic model of a banking firm based on inventory manage-
ment of stochastic cash flows. That paper developed a theoretical model of a bank that takes
deposits, makes loans, and engages in maturity mismatch. Cash inflows were generated by
new deposits and repayment of loans; cash outflows were generated by withdrawal of deposits,
new loans being made, and dividend payouts. A limitation of that paper was that interest
rates and the supply of deposits (i.e. the quantity of cash inflows from new deposits) were
exogenous. It would be valuable if we could endogenize interest rates and quantities of credit
by specifying the decision problem of the bank’s customers; doing this for both borrowers
and lenders would allow us to analyze both prices (e.g. interest rates and spreads) and quan-
tities (the amount of savings, which influences consumption; the amount of lending, which
influences investment) in equilibrium.
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This is obviously an ambitious task; this paper takes a small step towards this goal by de-
veloping a very simple model of an industry with an inventory-theoretic financial firm. A
Ponzi scheme can be thought of as a bank without a lending business; the only source of
cash inflows are new depositors, while cash outflows are generated by withdrawals of deposits
and dividend payouts. While real-life Ponzi schemes are usually fraudulent, it is possible to
imagine a ”rational” Ponzi scheme, in which depositors with rational expectations willingly
invest money. We model a single monopoly firm that offers a price (i.e. interest rate) to
an overlapping-generations population of customer/depositors. Depositors live two periods.
When young, they are endowed with an income and make a portfolio choice decision of how
much to hold in riskless cash, and how much to save in risky bank deposits.

The aggregate amount of savings in a period translates into a cash inflow for the bank. When
old, depositors will withdraw their deposits at the promised interest rate, which translates
into a cash outflow for the bank. Population growth is stochastic; from the bank’s point of
view, this translates into uncertainty in cash inflows. The bank chooses its dividend payout
and interest rate each period; it may go bankrupt, in which case new depositors will lose
everything, resulting in a zero return on their savings. From the depositors’ point of view,
deposits are a risky investment; they take this risk into account when choosing how much
to save. Equilibrium is defined in the IO sense, when the firm takes the expected demand
schedule as given and jointly chooses price and quantity supplied, while consumers take price
as given and choose quantity consumed.

While obviously unrealistic and simplified, this model attempts a novel formalization of a
number of aspects of the financial industry. First, we model financial assets as something
produced by a firm, which is capable of choosing an offering price and producing more or less
(subject to demand), while also behaving as an asset with a well-defined risk and return. In
this way we attempt to connect the well-developed theory of savings and portfolio choice on
the consumer side, with the theory of production by a profit-maximizing firm.

Second, we endogenize the risk of bank failure, while also having depositors be forward-
looking. Third, it is a truism when discussing debt to say that ”every asset is a liability to
someone else”, but it is not often explicitly modeled. In our model, this arises from the fact
that cash flows that are owed to a depositor (i.e. an asset, from the depositor’s point of view)
must depart in the same amount from the bank (i.e. a liability).

Finally, our model is similar to OLG models of social security in which the young of one gen-
eration transfer some wealth to the old of the previous generation, but the actual mechanism
by which this takes place is usually assumed to be a welfare-maximizing government, or some-
times a passive financial intermediary. We explicitly detail this mechanism, and decentralize
it in two ways: first, in contrast to taxes or forced savings, depositors choose if and how much
to invest. Second, the intermediary’s objective function is explicitly profit maximization.

2 Related literature

The notion of banking as the inventory management of cash goes back to Edgeworth (1888).
Carpio (2011) discusses the basic model used in this paper and its relation to the literatures
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on inventory management and the ”optimal dividends” problem of insurance introduced by
de Finetti (1957).

Overlapping-generations models are commonly used to model public pensions and Social
Security-like schemes; if there is population or income growth, then a positive interest rate
can be sustained in Walrasian competitive equilibrium (Geanakoplos 1987). As in standard
models of general equilibrium, there is no role for financial intermediaries. Qi (1994) extends
the Diamond and Dybvig (1983) model of banks as liquidity insurance providers to an OLG
model; as in that paper, the bank is not modeled as a self-interested agent, but rather as
maximizing the welfare of its depositors. In our model, the bank is a profit-maximizing firm,
and we show how intermediation (and possible failure) arises from optimal behavior.

Artzrouni (2009) models a Ponzi scheme with a first-order differential equation, and gives
conditions that the deposit and withdrawal rates must satisfy in order to avoid collapse; in
contrast to this paper, the decision problems of the bank and its investors are not modeled.

For depositor preferences, we use a simple version of the mean-variance formulation originated
by Markowitz (1952). This is for convenience; this results in a simple portfolio choice decision
problem that we believe is still meaningful. More complex preferences can be captured by a
different mean-variance indifference curve, or by directly solving a fully specified consumption-
savings problem.

3 The Model

3.1 Environment

The population of households is a 2-period OLG with stochastic population growth. Let Nt

denote the number of births at time t. Then population growth between t and t + 1 will be
Nt+1

Nt
= gt, which is a random variable. Assume that gt can take on two values glow, ghigh with

probability 1− phigh, phigh respectively.

3.2 Bank’s problem

The bank begins each period with the following state variables: starting cash reserve Mt,
maturing liabilities Dt, and current population of depositors (i.e. households in old age)
Nt. The probability distribution of gt and the depositor and bank’s problems are common
knowledge. Assume the bank moves first by choosing the dividend dt ∈ [0,Mt] and the
offered interest rate on deposits rt ≥ 0. The depositors then choose how much to invest in
bank deposits, given the bank’s state and action, denoted f(r,M,D,N). The depositor’s
problem will be specified below; we assume f(·) is known to the bank. The bank behaves
strategically with respect to the depositor (i.e. it takes the depositor’s reaction into account
when choosing dt, rt). In each period, the sequence of events is as follows:

1. Bank chooses dt ∈ [0,Mt] , rt ∈ [0,∞).
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2. Dt, dt is paid out; at this point in time, the previous period’s investors are certain to
get paid, and the bank will receive this period’s utility u(dt) = dt

3. population growth gt = Nt+1/Nt is realized, but not observed by bank or depositors

4. newly born depositors choose savings, causing cash inflow f(rt,Mt, Dt, Nt)Nt+1

5. gt is revealed to everyone. Calculate Mt+1 = Mt + f(rt,Mt, Dt, Nt)Nt+1 −Dt − dt

6. if Mt+1 ≤ 0, the bank fails, ceases operating, and receives a zero payout in all future
periods. The bank also experiences a utility penalty ZMt+1 that is linear in the amount
of the shortfall. This period’s depositors will get a zero return. Otherwise, begin next
period with Mt+1, Dt+1 = (1 + rt)f(rt,Mt, Dt, Nt)Nt+1

Note that cash is not conserved if the bank fails; total outflows Dt + dt will exceed Mt. It
is possible to eliminate this problem by going to continuous time (which would eliminate
discontinuous jumps past zero) or by modeling partial recovery of assets in bankruptcy. Al-
ternatively, we could make the payout of dt conditional on survival, in which case cash would
be destroyed in bankruptcy. In the interest of simplicity, we will assume that there is an
outside insurance fund that ensures previous depositors get paid. The Bellman equation for
this problem is:

V (Mt, Dt, Nt) = max
rt,dt
{dt + βE [V (Mt+1, Dt+1, Nt+1)]}

subject to boundary condition V (M ≤ 0, ·, ·) = −ZM and constraints

Mt+1 = Mt + f(rt,Mt, Dt, Nt)Nt+1 −Dt − dt

Dt+1 = (1 + rt)f(rt,Mt, Dt, Nt)Nt+1

Nt+1 = gtNt

Since u(dt) = dt and V (M ≤ 0, ·, ·) = −ZM are linear functions, we can eliminate Nt from
the state variables by dividing Mt, Dt, and dt by Nt: let dt = dt

Nt
, Dt = Dt

Nt
,Mt = Mt

Nt
. These

can be thought of as quantities per ”current customer”. Substituting these variables into the
problem, we can define an equivalent problem with Bellman equation

V (Mt, Dt) = max
rt,dt

{
dt + βE

[
gtV (Mt+1, Dt+1)

]}
subject to boundary condition V (M ≤ 0, ·) = −ZM and constraints

Mt+1 =
1

gt
(Mt + f(rt,Mt, Dt)gt −Dt − dt) (1)

Dt+1 = (1 + rt)f(rt,Mt, Dt) (2)

The interpretation of these constraints are as follows:

1. cash reserve per customer at t+ 1 = net cash after inflows/outflows per customer at t,
shrunk by gt
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2. liabilities per customer at t+ 1 = amount deposited in t plus interest

The value function of this problem is the ”per-customer” fraction of the previous value func-
tion: V (Mt, Dt) = V (Mt,Dt,Nt)

Nt
. For some parameter values (e.g. if βglow > 1) it will be

optimal in each period to retain all cash and pay no dividend; an optimal policy may not
exist in these cases.

3.3 Depositor’s problem

We make the following assumptions:

• Depositors live 2 periods. In the first period, they receive an income of 1, all of which
must be invested, and face a portfolio allocation problem that determines how much
wealth they will have in the second period.

• Depositors can save via two assets: a riskless storage asset with a return of 1 (a cash-like
asset), and bank deposits, which are risky. The bank offers interest rate r, but can go
bankrupt, in which case nothing is returned. If the probability that the bank does not
go bankrupt is ρ, then returns on bank deposits follow a Bernoulli distribution scaled
by (1 + r), with mean (1 + r)ρ and variance (1 + r)2ρ(1− ρ).

• Preferences over wealth are of mean-variance type. We assume a convenient form:
u(z) = E(z)−m·SD(z), wherem captures the degree of ”risk aversion”. The indifference
curves for this representation are parallel lines in SD-mean space.

• Depositors are borrowing and liquidity constrained: they cannot go short cash or bank
deposits.

• If depositors face a ”tie” between cash and bank deposits, they will choose bank deposits.

• Depositors behave strategically with respect to their actions; that is, they know how
their choice affects the bank and take that into account.

The efficient frontier for a portfolio of one riskless and one risky asset and with borrow-
ing/liquidity constraints is a line segment with endpoints at the (mean, SD) point of each
individual asset. Let f denote the fraction of the total income=1 that is invested in the risky
asset. If the slope of the frontier is greater than m, the depositor will put everything into the
risky asset (f = 1); otherwise, the depositor will hold everything in the riskless asset (f = 0).
Suppose the depositor knows the bank’s state variables M,D and its choices d, r for this
period. The bank will survive if Mt+1 = 1

gt
(Mt + fgt−Dt− dt) > 0, or if fgt > dt−Mt +Dt.

Denote k = dt −Mt + Dt, the per-customer net cash outflow before new deposits. The de-
positor knows that his choice of f determines the cash inflow to the bank and therefore its
probability of survival, denoted ρ(f). By assumption, if the depositor can choose f to cause
a ”self-fulfilling prophecy” resulting in a favorable return, he will do so. Since f will only
take on values 0 or 1, we need only examine ρ(0) and ρ(1). Recall that gt ∈ {glow, ghigh} with
probabilities 1− phigh, phigh respectively.

• If k < 0, the bank will survive with certainty even if f = 0. Therefore, optimal f = 1.

• If k > ghigh, the bank will fail with certainty even if f = 1. Therefore, optimal f = 0.
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Figure 1: Depositor’s portfolio choice problem

• If k ≤ glow, the bank will fail with certainty if f = 0 and survive with certainty if f = 1.
Therefore, optimal f = 1.

• If glow < k ≤ ghigh, the bank will fail with certainty if f = 0, but will survive with a
good shock if f = 1: ρ(0) = 0, ρ(1) = phigh. Therefore, the depositor will choose f = 1
if the slope of the efficient frontier using a Bernoulli probability of phigh is greater than
the risk-aversion parameter m:

m ≤
(1 + r)phigh − 1

(1 + r)
√
phigh(1− phigh)

The depositor’s portfolio choice problem is graphically shown in mean-SD space in Figure 1.

4 Numerical solution

Now that we have f(rt,Mt, Dt), we have all the parts needed for a solution to the bank’s prob-
lem. We solve the problem numerically using value function iteration.1 For the benchmark
problem, we assume the following parameter values:

• Stochastic population growth: gt ∈ {0.8, 1.2} with probability 0.1, 0.9 respectively.

1The computational procedure was implemented using C++ and Python and run on a 2.8 GHz quad-core
Intel CPU. The benchmark case took about 13 minutes to converge.

6



• Depositor risk aversion: m = 0.1

• Bank’s discount rate: β = 0.8

• Utility penalty for bankruptcy is zero: Z = 0

• Mt, Dt space is approximated by a regular 160x200 grid, taking values between 0 and 4
for both Mt and Dt.

The computed value function V (Mt, Dt) is shown in Figure 2. The optimal policies d∗t (Mt, Dt)
and r∗t (Mt, Dt) are shown in Figure 3. Finally, we show M∗

t+1, the optimal choice for next
period’s beginning cash reserve, conditional on ghigh occurring in Figure 4; if glow occurred
then Mt+1 is simply shifted downward. In these graphs, Mt and Dt are on the X and Y axes.

Consider Figure 2, which shows the value function. We color each grid point based on the
probability of bankruptcy and the optimal policy function. Starting from the origin along the
direction of increasing Dt, the properties of these points are:

• Yellow: the bank survives with certainty, and d∗t = Mt. The bank extracts all cash
reserves, but survival is still assured due to cash inflows of f = 1 from the depositors.
The bank does not offer an interest rate above that of cash, so r∗t = 0.

• Green: the bank survives with certainty, and d∗t < Mt. The bank does not offer an
interest rate above that of cash, so r∗t = 0.

• Blue: the bank survives if ghigh occurs and cash inflows are high; it goes bankrupt
otherwise. Since bank deposits are now a risky asset, the bank must offer a higher
return than cash; r∗t > 0. For the benchmark parameter values, r∗t = 0.162.

• Red: the bank will go bankrupt with certainty, and d∗t = Mt (bank extracts all cash).
r∗t is irrelevant, since the depositor will not invest at any rate.

Note that in the red, green, and yellow regions, the slope of V along the Mt axis is 1; this
is because an increase in Mt directly translates into an increase in cash extracted. In the
red region, the slope of V along the Dt axis is zero, since additional liabilities are irrelevant
when bankruptcy is certain. The slope is 1 in the green region, since additional Mt will be
extracted; and it is less than 1, depending on β, in the yellow region, where additional Mt

will go towards increasing Mt+1 in the next period.

We can also examine the dynamic properties of this system. The initial values of (Mt, Dt) and
the transition functions induced by the optimal policies define a Markov chain; we approximate
this chain by taking each grid point as a state, which transitions to the grid point closest
to (Mt+1, Dt+1) conditional on glow or ghigh occurring. If Mt+1 < 0, the chain transitions
into an absorbing bankruptcy state. Bankruptcy will occur in finite time almost surely, but
we are interested in how long the bank survives before going bankrupt; in particular, we
would like to know if the states in which the bank offers rt > 0 can reach themselves with
positive probaility. If this is not possible, then then in a sense, the world (as specified by
our behavioral and stochastic parameters) cannot support this model of banking, even given
arbitrarily unlikely sequences of good shocks.

From the graph induced by our approximated Markov chain, we can compute the set of states
that can reach themselves with positive probability; we can also compute the expected hitting
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Figure 2: Value function for gt ∈ {0.8, 1.2}, pHigh = 0.9,m = 0.1, β = 0.8, Z = 0

Table 1: Transition matrix and expected hitting time of bankruptcy state
(Mt, Dt) •0.050, 1.003 •0.323, 1.003 •0.348, 1.003 •0.050, 1.162 •0.174, 1.162 bankruptcy E(hitting time)

•0.050, 1.003 0 0 0 0 0.9 0.1 10

•0.323, 1.003 0.1 0 0.9 0 0 0 20

•0.348, 1.003 0.1 0.9 0 0 0 0 20

•0.050, 1.162 0 0 0 0.9 0 0.1 10

•0.174, 1.162 0 0 0 0.9 0 0.1 10

time of the absorbing bankruptcy state. Table 1 shows the transition matrix of grid points
that remain after repeatedly removing nodes with zero indegree (i.e. cannot be reached from
any previous state). There are three blue nodes, which will transition into bankruptcy if glow
occurs with probability 0.1; otherwise, the system will transition into another blue node. We
can calculate the expected time to bankruptcy for each state with the transition matrix; the
blue nodes are one bad shock away from bankruptcy, and therefore survive with an expected
time of 1/plow = 1/0.1 = 10. Green states remain green until a bad shock occurs, then
transition to blue; with a total expected hitting time of 20.

4.1 Comparative statics

We numerically examine the effects of changes in parameter values. Solutions for different
values of β, phigh,m, glow, ghigh, and Z were computed, starting with the values given above
as the baseline. We focus on two outcomes of interest:
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Figure 3: Optimal policies d∗t and r∗t for gt ∈ {0.8, 1.2}, pHigh = 0.9,m = 0.1, β = 0.8, Z = 0
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Figure 4: Mt+1 conditional on ghigh for gt ∈ {0.8, 1.2}, pHigh = 0.9,m = 0.1, β = 0.8, Z = 0

1. Interest rate offered. The only parameters that are found to affect r∗t are phigh and
m; this is because the only parameters that enter into the depositor’s decision are the
interest rate, probability of bankruptcy, and risk aversion, and because the bank is a
monopolist. A higher population growth rate, which results in a higher equilibrium
interest rate in other OLG models, is ”captured” by the bank as increased profits.
Figures 5 and 6 show r∗t for different values of phigh and m. As the probability of a
high population shock increases, bank deposits become less risky, and the bank can
offer a lower interest rate while still attracting deposits. Similarly, a higher risk aversion
parameter means the bank must offer a higher interest rate.

2. Expected time to bankruptcy. For a given set of parameters, we compute the set of
states that can reach each other with positive probability, the transition probabilities
between them, and their expected time to hitting the absorbing bankruptcy state. Table
2 reports the highest expected hitting time for a range of parameters, starting from the
baseline. Some parameter values result in a chain that hits bankruptcy in bounded time
for any initial state; these are reported as ”None”. Other chains can have states that
never hit bankruptcy; these are reported as∞. A higher β, lower depositor risk aversion,
and higher population growth increase the expected time to bankruptcy. Varying the
bankruptcy penalty did not appear to have an effect for the range of parameter values
tested here.
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Figure 5: Interest rate offered vs. probability of high population shock

Figure 6: Interest rate offered vs. depositor risk aversion
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Table 2: Maximum expected hitting time of bankruptcy state
β phigh zlow zhigh m Z max E(hitting time)

0.8 0.9 0.8 1.2 0.1 0 20

0.7 0.9 0.8 1.2 0.1 0 20

0.6 0.9 0.8 1.2 0.1 0 10

0.5 0.9 0.8 1.2 0.1 0 10

0.8 0.95 0.8 1.2 0.1 0 160.22787

0.8 0.9 0.8 1.2 0.1 0 20

0.8 0.75 0.8 1.2 0.1 0 5.75

0.8 0.6 0.8 1.2 0.1 0 None

0.8 0.9 0.5 1.2 0.1 0 10

0.8 0.9 0.6 1.2 0.1 0 10

0.8 0.9 0.7 1.2 0.1 0 20

0.8 0.9 0.8 1.2 0.1 0 20

0.8 0.9 0.9 1.2 0.1 0 120

0.8 0.9 1 1.2 0.1 0 ∞
0.8 0.9 0.8 1 0.1 0 None

0.8 0.9 0.8 1.1 0.1 0 11.9

0.8 0.9 0.8 1.2 0.1 0 20

0.8 0.9 0.8 1.3 0.1 0 310.782204

0.8 0.9 0.8 1.2 0.1 0 20

0.8 0.9 0.8 1.2 0.15 0 20

0.8 0.9 0.8 1.2 0.2 0 20

0.8 0.9 0.8 1.2 0.3 0 20

0.8 0.9 0.8 1.2 0.5 0 11.9

0.8 0.9 0.8 1.2 0.7 0 11.9

0.8 0.9 0.8 1.2 0.1 0 20

0.8 0.9 0.8 1.2 0.1 -0.1 20

0.8 0.9 0.8 1.2 0.1 -0.2 20

0.8 0.9 0.8 1.2 0.1 -0.5 20

0.8 0.9 0.8 1.2 0.1 -0.7 20

0.8 0.9 0.8 1.2 0.1 -1 20
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5 Conclusion and future research

We have presented a model of a banking firm as an inventory manager of cash flows, and shown
that this model is general enough to apply to many other types of financial intermediaries. A
Ponzi scheme is a simple instance of our model in which deposits from new investors are the
only cash inflow; we numerically solved a partial equilibrium model of an industry with a single
monopoly ”bank”. We showed that for a benchmark set of parameter values, the optimal value
functions and optimal policies partition the state space into ”bankrupt”, ”safe”, and ”risky”
regions; the latter region in characterized by the bank paying nonzero interest. Markov chain
analysis allows us to calculate the expected time the bank survives before entering bankruptcy.
Numerical comparative statics shows that decreasing the probability of the good population
shock, as well as increasing the depositor’s risk aversion, increases the equilibrium interest
rate up to a certain point, beyond which no interest above cash is offered at all.

This model is fairly simple and can be extended in interesting ways. First of all, we can add
the lending side of the business, which would allow us to examine an endogenously chosen
maturity structure. We would also be able to examine effects on one side of the business (e.g.
lending) caused by changes in parameters to the other side (e.g. changes in rates at which
the bank borrows).

We can also introduce competition into the model, and examine how competitive forces affect
equilibrium interest rates, bank profits, and the risk of bankruptcy. Finally, we can examine
other financial intermediaries (e.g. insurance, pension funds) using this approach.
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