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Welcome to Advanced Microeconomic Analysis

» This course is an introduction to the foundations of
microeconomic theory, that is, the analysis of the behavior of
individual rational agents (consumers, firms, etc).

» The course will be taught entirely in English.
» Website: http://rncarpio.com/teaching/AdvMicro

» Announcements, slides, & homeworks will be posted on
website
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About Me: Ronaldo Carpio

v

BS Electrical Engineering & CS, UC Berkeley
» Master's in Public Policy, UC Berkeley

PhD Economics, UC Davis

Joined School of Banking & Finance in 2012
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» Main textbook: Advanced Microeconomic Theory, 3rd Ed
(2003) by Jehle & Reny

» We will tentatively cover Chapters 1-5 and 7-8. Material may
be added or dropped, depending on time constraints.

» For those interested, a more mathematically rigorous textbook
is Microeconomic Theory by Mas-Colell, Whinston, and Green.
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» There will be around 5 graded homework assignments, due
every 2 weeks. Assignments will be posted on the course
website.

» Homeworks: 15%
» Midterm exam: 35%

» Final exam: 50%

Prof. Ronaldo CARPIO Advanced Microeconomic Analysis, Lecture 1



» Email: rncarpio@yahoo.com
» Office: 913 Boxue Bldg.
» Office Hours: Monday 16:00-17:00 or by appointment
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Course Outline

> Preliminaries: Convexity and Constrained Optimization (Appendix
A2.2 & A2.3)

» Consumer Theory (Chapter 1)

» Duality (Chapter 2.1)

» Risk and Uncertainty (Chapter 2.4)

> Theory of the Firm (Chapter 3)

» Partial Equilibrium (Chapter 4.1)

» General Equilibrium (Chapter 5.1, 5.2, 5.4)
> Game Theory (Chapter 7)

» Imperfect Competition (Chapter 4.2)

» Asymmetric Information (Chapter 8)
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» Let's begin by considering sets of points in R".

» Aset ScR"is convex if: for any two points x!,x% € S, all points
on the line segment joining x* and x? are also in S:

tx'+(1-t)x’ €S for all t€[0,1]
» The weighted average tx! + (1 - t)x?, where the weights are

positive and add up to 1, is called a convex combination.

» We can also have convex combinations of any number of points:
tixt + tox® + ...+ t;x!, where Y/ ;=1 and t; > 0 for all /.

» An extreme point of S is a point that cannot be written as a convex
combination of other points in S.

Prof. Ronaldo CARPIO Advanced Microeconomic Analysis, Lecture 1



1
x H
2 1
I
z 1
=i+ (- aff——— |
- | 1
| I
| 1
| I
2 X | |
x2 | |
1 |
I |
| |
I 1 X
2 1 2 1
Xy Zp=tx; + (1 — 1) x] X

Figure AL.4. Some convex combinations in R.

Convex sets Non-convex sets

C—]

Figure A1.5. Convex and non-convex sets in RZ,
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Properties of Co Sets

» If S is convex, then the convex combination of any finite number of
points in S is also in S.

» The intersection of any number of convex sets is convex.
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Hyperplanes

» A hyperplane is a generalization of a line in 2D to N dimensions:
{xeR"a-x=b}
» Here, a is a normal vector to the hyperplane: it is perpendicular to
any vector that lies in the hyperplane.

» For example, in 2D, the equation ax + by = ¢ defines a hyperplane,
and (a, b) is a normal vector to this hyperplane.

» An equivalent equation defining a hyperplane with normal vector a,
passing through a point x% is: a- (x —x%) = 0.
> A hyperplane defines two half-spaces:

» the half-space above the hyperplane, {x|a-x > b}
» the half-space below the hyperplane, {x|a-x < b}

» In economics, the most common hyperplane is the budget line: if
there are n goods with prices p;...p, and wealth w, then the
equation pixy + ...ppx, = w defines a hyperplane.
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Half-Spaces

v

A half-space is a convex set.

» Therefore, the (non-empty) intersection of any number of
half-spaces is also a convex set.

» In the standard consumer problem with two goods, the feasible set
(that is, the set of possible bundles we want to maximizer over) is
the intersection of three half-spaces:

x1 20, x2 20, p1x1 + paxo < w

» A polygon with n faces is the intersection of n half-spaces.
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Separating Hyperplane

» Suppose X and Y are closed, nonempty, and disjoint convex subsets
of R”. If either X or Y are compact (i.e. closed and bounded), then
there exists a hyperplane that separates X and Y.

» That is, there exists a nonzero vector a € R” and scalar b such that:

» a-x>bforall xe X
»a-y<bforallyeY

» This theorem is be used to prove the existence of general
equilibrium and existence of solutions in game theory.
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Figure A2.14, Separating convex sets.
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Convex and Concave Functions

» Consider a function f: X — R, where X is a convex set.

» Let x',x? be any two points in X, and let x* denote their convex
combination: x = tx! + (1 - t)x?, for t € [0,1].

» fis concave if f(x') > tf(x*) + (1 -t)f(x?), for all t €[0,1].
» f is strictly concave if the inequality is strict.
» fis convex if f(x') < tf(x') + (1 - t)f(x?), for all t €[0,1].

» f is strictly convex if the inequality is strict.
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Epigraphs and Hypographs of a Function

» The epigraph of a function f is the set of all points that are above
the graph:
{(x,r) e R™|r> f(x)}

> Similarly, the hypograph of a function f is the set of all points that
are below the graph:

{(x,r) e R™r < f(x)}
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Convex and Concave Functions

» A function f is concave iff its hypograph (the set of points below
the graph) is convex.

> A function f is convex iff its epigraph (the set of points above the
graph) is convex.
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Calculus Conditions for Convexity and Concavity

» A twice-differentiable function f is concave iff its Hessian matrix
(i.e. the matrix of second derivatives) is negative semidefinite at all
points of its domain.

» f is strictly concave if its Hessian is negative definite at all points on
its domain.

» f is (strictly) convex if its Hessian is (positive definite) positive
semidefinite at all points on its domain.
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Quasiconvex and Quasiconcave Functions

» The upper level set of a function f at a value r is the set
{x e X|f(x)>r}.

» Similarly, the lower level set is {x € X|f(x) > r}.

» A function f is quasiconcave if its upper level sets are convex for
every r e R.

» Similarly, f is quasiconvex if its lower level sets are convex for every
reR.

» Suppose that f : X — R is quasiconcave and X is convex. The the
set of maximizers of  over X is convex.
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A Quasiconcave Function

> For example, a "bell curve” or normal distribution is not concave,
but it is quasiconcave.

> For any value of p, the upper level set (that is, the set of all x such
that (x) > p) is a convex set.
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Unconstrained Optimization

» Suppose f: X - R is twice continuously differentiable.
» Necessary conditions for f(x) to be a local maximum are:

» First-order: Vf(x)=0
» Second-order: The Hessian of f at x is negative semidefinite.

» If f is concave, then all local maxima are also global.

» This is the reason why concavity is so desirable for optimization
problems: to find the global maximum, you only need to check local
information about the function.

» Otherwise, to guarantee a global maximum, you might have to
compare all local maxima.

» If f is strictly concave, then there is a unique maximum.

Prof. Ronaldo CARPIO Advanced Microeconomic Analysis, Lecture 1



Constrained Optimization

» Suppose we want to solve a maximization problem with a single
equality constraint:

max f(xy,x2) subject to g(x1,x) =0
X1,X2

» For example, the standard consumer problem with 2 goods is

max u(xy, xp) subject to p1x; + poxo —w =0
X1,X2

» Lagrange's method is to form a new function, the Lagrangian, with
an additional variable A:

L(X17X27)\) = f(X17X2) - Ag(X17X2)

» Then, we find an inflection point of this function, by setting its
gradient to 0.

oL Of (x1,%2) )\Bg(XLXz)

o DFain) | DE(a) |

= 2£ |= X1, g (x1,x: -

vi %xl_z 8)1<22 - A 3;22 8
ox g(X17X2)

Prof. Ronaldo CARPIO Advanced Microeconomic Analysis, Lecture 1



Example: Find the Closest Point on a Line

» Suppose we are given a point (xp, yo) and a line a;x + axy = b.

» The (squared) Euclidean distance between two points (x,y;) and
(x2,¥2) is (2 = x1)* + (y2 = y1)*.
» We want to find the point on the line that is closest to (xg, ¥o).

» We can write this as a constrained maximization problem:
max—(x—><0)2—(y—y0)2 st. aixx+ay—-b=0
X,y

» The (concave) objective function is f(x,y) = —(x - x0)? = (¥ - y0)°.

» There is one equality constraint: g(x,y) =ajx+ay-b=0

» The Lagrangian is:

L(x,y,A) = =(x =x0)* = (¥ = y0)* = Marx + a2y ~ b)
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L(x,y,A) = =(x = x0)> = (y = y0)> = Marx + a2y — b)

%=—2(X—X0)—)\31=0
Ox
oL
67:_2()/_)/0)_)\32:0
Y
oL
5:alx+azy—b:0

Divide eqn 1 by eqn 2 to eliminate A:

X = X0 ai
= — = a(x-x)=a1(y - yo)
Y—Yo a2

Now we have 2 unknowns and 2 equations. Solve to get:

alb + ang + ai1ayo a2b —aiazxxp + afyo
X = =
a2+ a3 ’ a?+as
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Lagrange’s Theorem (A2.16)

Lagrange’s Theorem for multiple equality constraints:

» Let f(x),g'(x),...,g™(x) be continuously differentiable functions
over some domain D.

» Let x* be an interior point of D, and suppose that x* is an optimum
of f(-) subject to the constraints g*(x*) =0, ...,g™(x*) = 0.
» If the gradient vectors Vg!(x*),..., Vg™ (x*) are linearly

independent, then there exist m unique numbers A, ..., Ay, such
that:

OL(x*,X*) Of(x*) ’Z": «0g(x*)
Ox; T Ox A Ox;

fori=1,....n

> Alternatively:

m . .
VA(x*) =Y A vegl(x*),  g(x*)=0forj=1,...m
=
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Lagrange’'s Theorem (A2.16)

» Note that these conditions are necessary, but not sufficient.
» If an optimum exists, then AJ, ..., A}, exist, but not vice versa.

» This does not guarantee that the optimum exists (for example, if
there is no point that satisfies all the equality constraints
simultaneously).

» Only first-order conditions are used, which means that if there is an
optimum, it may be a minimum or a maximum.

» Second-order conditions (e.g. the Hessian) are necessary to prove
whether it is @ minimum or a maximum.

> In this course, we will only deal with concave or quasiconcave
functions, so it will be a maximum.
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Why does the Lagrange method work?

» Recall that the gradient of a function is the direction of steepest
increase.

» Suppose we have a smooth function f, with gradient V£ (x).

» At point x, if we move at a direction not perpendicular to V£(x),
the value of f changes.

» If we move in a direction perpendicular to Vf(x), the value of f is
constant.

» Suppose x satisfies the constraint g(x) =0. If we are at a
constrained maximum, it is not possible to move along the
constraint while increasing f.

> This is only possible if Vf(x) is perpendicular to g, i.e. if Vf(x) is
parallel to Vg(x).

» This is an alternative way of writing the Lagrangian:

Vi(x)=Ave(x),  g(x)=0
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Inequality Constraints

» Suppose we want to have inequality constraints as well as equality
constraints.

» A simple example: suppose we want to maximize f(x) subject to
x 2 0.

> Assume f(+) is concave.

» There are three possible ways in which the constraint is satisfied at
the optimum.
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flx) fx) f(x)
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f'(x)>0

xlx"=0 x =0 x=0 X

(a) Case 1 (b) Case 2 (c) Case 3

» Case 1: the global maximum is at x! < 0, which violates the
constraint x > 0.

» Therefore, the constrained maximum must occur exactly at x* =0,
since f(-) is decreasing at this point.

» We say that the constraint is " binding” or "active” at the optimum.

» If we removed this constraint, the optimizer would-change.
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fx) fx) fx)

TN f"y<o — A - =
‘ .. /*\
fl(x)=>0

=0 =0 =0 >0

(a) Case 1 (b) Case 2 (c) Case 3

» Case 2: the global maximum is at x* = 0, which satisfies the
constraint x > 0 with equality.

» We say that the constraint is " binding” or "active”, but irrelevant.
» If we removed this constraint, the optimizer would not change.

» The unconstrained FOC conditions are satisfied: f'(x) = 0.
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(a) Case 1 (b) Case 2 (c) Case 3

» Case 3: the global maximum is at x* > 0, which satisfies the
constraint x > 0 with strict inequality.

> We say that the constraint is " not binding” or "not active”.
» If we removed this constraint, the optimizer would not change.

» The unconstrained FOC conditions are satisfied: f'(x) = 0.
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» We can apply the method of Lagrange multipliers to inequality
constraints, with some additional conditions.

» As before, each constraint has its own Lagrange multiplier A;.
» If a constraint is not binding, or binding and irrelevant, then \; = 0.
» If a constraint is binding and not irrelevant, then \; > 0.

» This leads to a more general version of Lagrange's theorem, called
the Karush-Kuhn-Tucker or KKT conditions.
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» KKT Necessary Conditions for Optmality (A2.20)

» Consider the maximization problem with m inequality constraints:

max f(x) st. g'(x)<0,..,gM(x) <0
X

» Assume f(-),g%("),...,g™(-) are continuously differentiable.

» Suppose that x* is an solution to this problem (i.e. x* is a
maximizer subject to the constraints).

» If the gradient vectors of the binding constraints at x* are linearly
independent, then:

> There is a unique A* = (A}, ..., A%) such that

OL(x*,A*) _ of(x*) & g’ (x*)

ANf—=——~=0fori=1,..
6X1 aX,' Z J 8x; ort vl

Jj=1

A7 >0, g/(x")<0, \g/(x")=0, forj=1,...m
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aL(X A ) 67(()( Z)\* ) =0 fori=1,...,n
= 3X,

Ox1 Ox;

Af 20, g/(x*)<0, Ag/(x*)=0, forj=1,...m

» Let's understand what these conditions mean.

» Suppose that constraint j is not binding, or binding and irrelevant
(i.e. the optimizer would not change if we removed this constraint).

» Then its associated Lagrange multiplier, A, is zero.

» Constraints that are binding and not irrelevant (i.e. the optimizer
would change if the constraint were removed) have a strictly
positive Lagrange multiplier: A7 > 0.

» For such a constraint, the condition g/(x*) = 0 holds with equality.

» For constraints that are nonbinding or irrelevant, the constraint may
hold without equality.

» The above conditions are a compact way of writing this down.

Prof. Ronaldo CARPIO Advanced Microeconomic Analysis, Lecture 1



» Consider the following maximization problem with two constraints:

max —x> st. —1<x<1
X

» We can rewrite the constraints as:
gl(x)=-x-1<0,g%(x) =x-1<0.

» Clearly, the maximizer is x* = 0, and both constraints are
non-binding.

» Therefore, the Lagrange multipliers for both constraints are zero:
AT =A;=0.

> Both constraints are satisfied with strict inequality.

» The first-order conditions for the Lagrangian simply reduce to
f'(x*) =0, since both Lagrange multipliers are zero.
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» Now, suppose we change the problem so that one constraint
becomes binding:

max —x st. 1<x<2
X

» We can rewrite the constraints as:
gl(x)=—x+1<0,g%(x) =x-2<0.

» Since —x? is decreasing as x > 0, the maximizer is where the first
constraint becomes binding, so x* = 1.

» The Lagrange multiplier for the first, binding constraint is positive:
Al >0.

» The Lagrange multiplier for the second, non-binding constraint is
zero: A\; =0.

» Only the second constraint is satisfied with strict inequality.
» The Lagrangian becomes: L(x,A1,\2) = —x% = A\;(—x +1).

» When finding the solution, we treat the binding constraint as an
equality, and ignore the non-binding constraint.
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» The KKT conditions don't tell us which constraints will be binding
or not. We have to use additional information.

» For example, in consumer theory, we will frequently have a
constrained maximization problem with two goods, x; and x», and
three constraints:

» x1 20
» x>0
» a budget constraint: p1x; + poxa < y.

» If we had no additional information, then the solution might be in
the interior (all constraints nonbinding), or at one of the corners
(two constraints binding).

» However, we will typically assume the objective function is strictly
increasing. Then the maximum must be on the budget constraint.

» Furthermore, we may assume the objective function goes to
negative infinity at x; =0 or x, =0. Then the first two constraints
will never be binding.

» Taken together, this tells us that only the budget constraint will be
binding, and we can treat it as a problem with a single equality
constraint.
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» For next week, please begin reading Chapter 1 of the textbook.

» We will begin the study of consumer theory.
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