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Administrative Stuff

▸ Homework #2 is due at the end of class. I will post the
solutions on the website later today.

▸ The midterm will next week, on April 17.

▸ Midterm will be open-book.

▸ Chapters 1, 2.1, 2.4, 3, and 4.1-4.2 (up to monopoly) will be
covered.

▸ Sample midterms from previous semesters are on the course
website.
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Review of Last Week

▸ A firm takes inputs and converts it into an output.

▸ The production function specifies how much output can be
produced with a given combination of inputs (e.g. capital,
labor).

▸ The production function is analogous to the utility function in
consumer theory.

▸ We assume it is differentiable, strictly increasing, strictly
quasiconcave.

▸ An isoquant is the set of inputs that produce a given level of
output (like indifference curves).

▸ A isocost line is the set of inputs that cost the same amount
(like a budget line).
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Review of Last Week

▸ The elasticity of substitution measures the response of the
MRTS (i.e. slope of the isoquant) as the ratio of input
changes.

▸ Returns to scale determine how output responds when inputs
are multiplied by a constant t. Returns may be:

▸ Decreasing: output is increased by less than a multiple of t.
▸ Constant: output is increased by a multiple of t.
▸ Decreasing: output is increased by more than a multiplee of t.

▸ If the production function is homogeneous of degree d , then d
determines the returns to scale (d < 1→ decreasing; d = 1→
constant; d > 1→ increasing)
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Review of Last Week

▸ Given input prices w1,w2 and output level y , the cost function
is the optimal value of the problem

c(www , y) = min
xxx∈Rn

+

www ⋅ xxx s.t. f (xxx) ≥ y

▸ The solution to this problem, xxx∗(w1,w2, y) is called the
conditional input demand function.

▸ The cost function is analogous to the expenditure function in
consumer theory, and the conditional input demand is
analogous to Hicksian demand.

▸ All the properties and relationships between the two are
similar.
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Short-Run Profit Maximization

▸ As before, the long-run profit function is when all inputs can be
changed. The short-run profit function is when some inputs must be
fixed.

▸ Theorem 3.9: Suppose that f is continuous, strictly increasing, and
strictly concave.

▸ For k < n, let xxx ∈ Rk
+ be a subvector of fixed inputs

▸ Consider f (xxx ,xxx) as a function of the subvector of variable
inputs xxx ∈ Rn−k

+ .
▸ Let www ,www be the vector of prices for the variable and fixed

inputs, respectively.
▸ The short-run, or restricted, profit function is:

π(p,www ,www ,xxx) = max
y ,xxx

py −www ⋅ xxx −www ⋅ xxx s.t. f (xxx ,xxx) ≥ y

▸ The solutions y(p,www ,www ,xxx),xxx(p,www ,www ,xxx) are called the short-run
output supply and variable input demand functions.
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Short-Run (or Restricted) Profit Function

▸ For all p > 0 and www >> 0, π(p,www ,www ,xxx), where well-defined, is:

▸ continuous in p and www ,
▸ increasing in p
▸ decreasing in www
▸ convex in (p,www)
▸ If π(p,www ,www ,xxx) is twice continuously differentiable, the

short-run output supply and variable input demand functions
have the same properties as in Theorem 3.8 (homogeneity of
degree zero, own-price effects, and positive semidefinite
substitution matrix)
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Optimal Shutdown

▸ Recall that sc(p,www ,www ,xxx) is the short-run cost function. Consider
the short-run profit function

π(p,www ,www ,xxx) = maxypy − sc(p,www ,www ,xxx)

▸ The first-order condition tells us that for optimal y∗ > 0,

p = d sc(y∗)
dy

▸ that is, price should equal short-run marginal cost. Suppose this is
true at some y1.

▸ Let tvc(y) denote the total variable cost, and let tfc denote the
total fixed cost. Then

π1 = py1 − tvc(y1) − tfc
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Optimal Shutdown

▸ If π1 is negative, the firm is better off shutting down and producing
nothing (y = 0). Let π0 denote profits when y = 0:

π0 = p ⋅ 0 − tvc(0) − tfc = −tfc < 0

▸ The firm will produce y1 > 0 only if π1 ≥ π0, or

py1 − tvc(y1) ≥ 0

p ≥ tvc(y1)
y1

= avc(y1)

▸ Thus, the firm will shut down if the output price p is less than the
average variable cost of y1.
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Example: Cobb-Douglas

▸ Let’s work through the properties of the general
Cobb-Douglas production function f (x1, x2) = xα1

1 xα2
2

▸ α1, α2 > 0, but do not necessarily add up to 1.

▸ f (x1, x2) is homogeneous of degree α1 + α2, which determines
the returns to scale.

▸ If α1 + α2 is less than/equal to/greater than 1, returns to
scale are decreasing/constant/increasing.

▸ The MRTS of x1 for x2 is:

MRTS1,2 =
∂f /∂x1
∂f /∂x2

=
α1x

α1−1
1 xα2

2

α2x
α1
1 xα2−1

2

= α1x2
α2x1

▸ Since the MRTS is unchanged if x2
x1

is multiplied by a
constant, f (x1, x2) is homothetic.
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Elasticity of Substitution

▸ The elasticity of substitution of x2 for x1 is:

σ21 =
d ln ( x2

x1
)

d lnMRTS1,2
=

d ln ( x2
x1
)

d ln(α1x2
α2x1

)

=
x1
x2

α1
α2

(α2
α1

x1
x2
) = 1

▸ Like CES, the elasticity of substitution is a constant.

▸ If the ratio of inputs x2/x1 increases by 1%, the MRTS also
increases by 1%.
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Cost Function

▸ Given input prices w1,w2 and output level y , the cost function
is

c(w1,w2, y) = min
x1,x2

w1x1 +w2x2 s.t. xα1
1 xα2

2 ≥ y

▸ Form the Lagrangian and find the FOC:

L(w1,w2, λ) = w1x1 +w2x2 − λ(xα1
1 xα2

2 − y)
∂L

∂x1
= w1 − λα1x

α1−1
1 xα2

2 = 0

∂L

∂x2
= w2 − λα2x

α1
1 xα2−1

2 = 0

∂L

∂λ
= xα1

1 xα2
2 ≥ y = 0
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▸ The first two equations give the usual optimality condition
MRTS=w1/w2:

MRTS = α1x2
α2x1

= w1

w2
⇒ w1x1

w2x2
= α1

α2

x1 =
α1w2x2
α2w1

y = (α1w2x2
α2w1

)
α1

xα2
2 = (α1w2

α2w1
)
α1

xα1+α2
2

x∗2 = (y (α1w2

α2w1
)
−α1

)
1

α1+α2

x∗1 = (y (α2w1

α1w2
)
−α2

)
1

α1+α2

Prof. Ronaldo CARPIO Advanced Microeconomic Analysis, Lecture 6



▸ The conditional input demand functions are given by:

x∗1 = (y (α2w1

α1w2
)
−α2

)
1

α1+α2
, x∗2 = (y (α1w2

α2w1
)
−α1

)
1

α1+α2

▸ The cost function is:

c(w1,w2, y) = w1x
∗

1 +w2x
∗

2

= w1 (y (α2w1

α1w2
)
−α2

)
1

α1+α2 +w2 (y (α1w2

α2w1
)
−α1

)
1

α1+α2

▸ If α1 + α2 = 1, then this becomes

c(w1,w2, y) = y (w1 (
α2w1

α1w2
)
−α2

+w2 (
α1w2

α2w1
)
−α1

)
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Short-Run Cost

▸ Suppose that x1 is fixed to be x̄1, and only x2 can be changed.
▸ The short-run cost function is:

min
x2

w1x̄1 +w2x2 s.t. x̄α1
1 xα2

2 ≥ y

▸ Since f (x1, x2) is strictly increasing, the optimal x2 will simply
be the value that produces exactly y :

x∗2 = ( y

x̄α1
1

)
1
α2

▸ The short-run cost function is then:

SRC(w1,w2, y) = w1x̄1 +w2 (
y

x̄α1
1

)
1
α2

▸ The first term is the fixed cost, and the second term is the
variable cost
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▸ Suppose α1 + α2 = 1 (constant returns to scale). The long-run
cost function is:

c(w1,w2, y) = y (w1 (
α2w1

α1w2
)
−α2

+w2 (
α1w2

α2w1
)
−α1

)

▸ Long-run marginal cost is the derivative with respect to y ,
which is simply:

LRMC = (w1 (
α2w1

α1w2
)
−α2

+w2 (
α1w2

α2w1
)
−α1

)

▸ This is also equal to long-run average cost, which is just
c(w1,w2, y)/y .

▸ These properties hold for any production function with
constant returns to scale (Exercise 3.36 and 3.37).
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Profit Function

▸ The profit function is the optimal value of the problem:

π(p,w1,w2) = max
x1,x2

py −w1x1 −w2x2 s.t. xα1
1 xα2

2 ≥ y

▸ We can substitute in xα1
1 xα2

2 for y , eliminating the constraint
and giving us an unconstrained problem:

π(p,w1,w2) = max
x1,x2

pxα1
1 xα2

2 −w1x1 −w2x2

▸ Assume that α1 + α2 ≤ 1. f (x1, x2) is homogeneous of degree
α1 + α2; we saw last week that this implies it is concave.

▸ Therefore, if we find an inflection point of the objective
function, it is the maximum.
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Profit Function

π(p,w1,w2) = max
x1,x2

pxα1
1 xα2

2 −w1x1 −w2x2

▸ The FOC are:

∂

∂x1
= pα1x

α1−1
1 xα2

2 −w1 = 0

∂

∂x2
= pα2x

α1
1 xα2−1

2 −w2 = 0
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Profit Function

▸ We can rewrite the FOC to get the marginal revenue product
= marginal cost optimality condition:

pα1x
α1−1
1 xα2

2 = w1 ⇒ x1 = pα1
y

w1

pα2x
α1
1 xα2−1

2 = w2 ⇒ x2 = pα2
y

w2

▸ We want to find the profit function, input demand function,
and output supply function. Let x∗1 , x

∗

2 , y
∗ denote the optimal

values of x1, x2, y . Then:

y∗ = (x∗1 )α1(x∗2 )α2 = (pα1
y∗

x1
)
α1

(pα2
y∗

x2
)
α2

(y∗)1−α1−α2 = (pα1

x1
)
α1

(pα2

x2
)
α2
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Profit Function

▸ Output supply, input demand, and profit functions are given
by:

y∗ = (pα1

x1
)

α1
1−α1−α2 (pα2

x2
)

α2
1−α1−α2

x∗1 = pα1
y∗

w1
, xxx∗2 = pα2

y∗

w2

π(p,w1,w2) = py∗ −w1x
∗

1 −w2x
∗

2

▸ If we knew the profit function, then Hotelling’s lemma states
that we can find the output supply and input demand
functions by differentiating:

∂π

∂p
= y∗,

∂π

∂wi
= x∗i
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Chapter 4: Partial Equilibrium

▸ So far, we’ve covered the decision problems of consumers and firms
separately.

▸ Now, we’ll combine them and examine the outcome.

▸ First, let’s assume that markets are perfectly competitive for both
buyers and sellers.

▸ Each buyer or seller is insignificant compared to the size of the
entire market, therefore a price-taker: his actions do not affect the
market price.

▸ An individual buyer’s demand for a good is the outcome of the
utility maximization problem, subject to a budget constraint.

▸ An individual seller’s supply of a good is the outcome of the profit
maximization problem, subject to technological constraints, output
price, and input prices.
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Market Demand

▸ Assume all buyers can be indexed by i ∈ {1, ..., I}.

▸ Let qi(p,ppp, y i) be buyer i ’s demand for good q, as a function of:

▸ own price, p
▸ prices of all other goods, ppp
▸ buyer i ’s income, y i

▸ Market demand for good q is the sum of all individual demands:

qd(p) = ∑
i∈{1,...,I}

qi(p,ppp, y i)

▸ Note that market demand depends not only on aggregate income of
all buyers, but also the distribution of income among buyers.

▸ Since individual demand is homogenous of degree zero in (ppp, y),
market demand is homogeneous of degree zero in (p,ppp, y1, ..., y I ).
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Market Supply

▸ We will distinguish between firms that are potential sellers in the
short run (where some inputs are fixed) and in the long run (where
all inputs are variable).

▸ Assume that in the short run, the number of potential sellers is
fixed, and can be indexed by j ∈ {1, ..., J}.

▸ The short-run market supply function is the sum of individual firm
short-run supply functions qj(p,www)

qs(p) = ∑
j∈{1,...,J}

qj(p,www)

▸ where p is the price of good q, and www are input prices.
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Short-Run Equilibrium

▸ Together, market demand and market supply will determine the
price and the total quantity traded.

▸ We say that a competitive market is in short-run equilibrium at
price p∗ when qd(p∗) = qs(p∗).

▸ Geometrically, this corresponds to the usual intersection of the
supply curve and the demand curve.

▸ At equilibrium, each buyer is buying his optimal amount of the good
at the market price.

▸ Each seller is selling his profit-maximizing output at the market
price.

▸ Therefore, no agent has any incentive to change his behavior.
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Example 4.1

▸ Suppose the supply side is a competitive industry with J identical
firms.

▸ Production is Cobb-Douglas: q = xαk1−α,0 < α < 1

▸ x is a variable input (e.g. labor)

▸ k is an input that is fixed in the short run (e.g. plant size)

▸ Note this technology has constant returns to scale.

▸ Let’s derive the short-run profit and supply functions.

▸ wx ,wk are input prices.
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Short-Run Firm Behavior

max
q,x

pq −wxx −wkk s.t. xαk1−α = q

= max
x

pxαk1−α −wxx −wkk

▸ First-order condition:

αpxα−1k1−α −wx = 0

x∗ = p
1

1−α x
1

α−1α
1

1−α k

π(p,wx ,wk , k) = p
1

1−αw
α

α−1
x α

α
1−α (1 − α)k −wkk

▸ By Hotelling’s lemma, differentiating profit with respect to p gives
short-run supply:

q(p,wx ,wk , k) = p
α

1−αw
α

α−1
x α

α
1−α k
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Short-Run Equilibrium

▸ Assume α = 1
2
,wx = 4,wk = 1, k = 1.

▸ Firm supply is qj = p
8

▸ Assume J = 48. Then market supply is qs = 48 p
8
= 6p.

▸ Assume market demand is given by: qd = 294/p.

▸ At short-run equilibrium: p∗ = 7,q∗ = 42,qj = 7/8, πj = 2.0625.
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Short-Run Equilibrium

▸ Note that each firm makes a positive profit.
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Long-Run Equilibrium

▸ In the long run, all inputs are variable.

▸ Also, firms may enter or exit the industry. Therefore, the total
number of firms Ĵ is endogenous.

▸ Firms will enter the industry if long-run profits are positive, and exit
if they are negative.

▸ In long-run equilibrium, two conditions must be satisfied.

▸ First, the market clears (supply = demand).

qd(p̂) =
Ĵ

∑
j=1

qj(p̂)

▸ Second, long-run profits for all firms are zero, so there is no entry or
exit.

πj(p̂) = 0 for j = 1, ..., Ĵ
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Example 4.2

▸ Suppose inverse market demand is p = 39 − 0.009q.

▸ Assume all firms have identical technology and face identical input
prices.

▸ Long-run profit function for a representative firm is
πj(p) = p2 − 2p − 399.

▸ By Hotelling’s lemma, output supply is y j = 2p − 2.

▸ Conditions that must be satisfied for a long-run equilibrium:

(1000/9)(39 − p̂) = Ĵ(2p̂ − 2)

p̂2 − 2p̂ − 399 = 0

p̂ = 21, Ĵ = 50

▸ Each firm produces 40 units.
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Long-Run Equilibrium

▸ By assumption, long-run profits are zero.
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Example 4.3

▸ Again, suppose that production is Cobb-Douglas: q = xαk1−α. Now,
all inputs are variable.

▸ Assume α = 1
2
,wx = 4,wk = 1, k = 1.

▸ Short-run profits and supply were:

πj(p, k) = p2k

16
− k ,qj = pk

8

▸ Note that the optimal long-run values for profit and supply can be
found by maximizing the short-run function over k .

▸ To satisfy the long-run zero profit condition, p̂ must be 4. k can
take any value.

▸ The market-clearing condition becomes:

qd(p̂) = 294

4
= 4Ĵ k̂

8
= qs(p̂)

147 = Ĵ k̂
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Example 4.3

qd(p̂) = 294

4
= 4Ĵ k̂

8
= qs(p̂)

147 = Ĵ k̂

▸ There are infinitely many combinations of Ĵ, k̂ that satisfy this
condition.

▸ We say the long-run equilibrium number of firms and plant size is
indeterminate. This is true in general when technology has constant
returns to scale.
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Imperfect Competition

▸ Now, let’s consider cases where firms have market power, i.e. they
can affect the market price through their actions.

▸ The extreme case of market power is pure monopoly, where there is
a single seller of a product.

▸ There are no close substitutes for the product, and entry into the
industry is blocked.

▸ The monopolist takes the market demand function as given, and
chooses price and quantity to maximize profit.

▸ This is equivalent to choosing quantity q, and charging exactly the
inverse demand p(q).
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Imperfect Competition

▸ Let r(q) = p(q)q denote revenue at output q, c(q) denote costs.

Π(q) = r(q) − c(q)

▸ If the optimal choice for q∗ is positive, then the first-order condition
must be satisfied:

Π′(q) = r ′(q∗) − c ′(q∗) = 0
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Pure Monopoly

Π′(q) = r ′(q∗) − c ′(q∗) = 0

▸ This is the usual requirement that marginal revenue = marginal
cost:

MR(q∗) =MC(q∗)
▸ Differentiate r(q) = p(q)q to get MR:

MR(q) = p(q) + q dp(q)
dq

= p(q) [1 + dp(q)
dq

q

p(q)]

= p(q) [1 + 1

ε(q)]

▸ where ε(q) is the elasticity of market demand at output q:

ε(q) = dq

dp

p

q

Prof. Ronaldo CARPIO Advanced Microeconomic Analysis, Lecture 6



Pure Monopoly

Π′(q) = r ′(q∗) − c ′(q∗) = 0

▸ We assume that ε(q) < 0, therefore market demand is downward
sloping.

p(q∗) [1 + 1

ε(q∗)] =MC(q∗) ≥ 0

▸ By assumption, MC and price are always non-negative.

▸ Therefore, ∣ε(q)∣ ≥ 1: the monopolist never chooses output in the
inelastic (i.e. elasticity < 1) range of market demand.
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Pure Monopoly

▸ In equilibrium, the deviation of price from MC is:

p(q∗) −MC(q∗)
p(q∗) = 1

∣ε(q∗)∣
▸ The more inelastic market demand, the greater the deviation from

p =MC .
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Equilibrium and Welfare

▸ So far, we have been analyzing different market structures and
predicting the equilibrium price and quantity traded, assuming that
consumers and producers behave rationally.

▸ This is a positive question: we are simply concerned about making a
prediction, without saying whether it is socially desirable.

▸ Now, we will ask if these outcomes are preferable from a social
point of view.

▸ This is a normative question: we are asking whether an outcome is
more beneficial to society.

▸ We will need to define what ”welfare” is, and how it is affected by
changes in prices and quantities.
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Partial Equilibrium Approach

▸ We want to see what the effect of a change in prices and quantities
of a certain good q has on a person’s welfare.

▸ Assume that the price of every other good except q remains fixed.
This is partial equilibrium analysis.

▸ Let p denote the price of good q; ppp denotes the price of all other
goods.

▸ Indirect utility = v(p,ppp, y). We will sometimes just write v(p, y).

▸ Let m be the amount of income spent on all other goods than q.
This is a composite commodity that represents the ”quantity” of all
other goods.

▸ If xxx(p,ppp, y) is demand for all other goods, then

m(p,ppp, y) = ppp ⋅ xxx(p,ppp, y)
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Exercise 4.16

▸ Let u(q,xxx) denote the consumer’s utility function over all goods.

▸ Under the usual assumptions on utility functions, then the 2-good
utility function u(q,m) defined by:

u(q,m) = max
xxx

u(q,xxx) s.t. ppp ⋅ xxx ≤ m

▸ also satisfies these assumptions, and the derived indirect utility and
demand functions from this problem match the original utility
function.
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Compensating Variation

▸ Suppose we are evaluating a policy that will result in a decrease in
price of good q.

▸ What is the consumer’s willingness to pay for this price decrease?
We can determine this if we know the consumer’s demand curve.

▸ Suppose the consumer’s income is y0.

▸ The initial price of the good is p0. As a result of the policy, it will
decrease to p1.

▸ The consumer’s utility before the price change is v(p0, y0); after, it
is v(p1, y0).

▸ The amount of income CV the consumer is willing to give up for
the price decrease must satisfy:

v(p1, y0 + CV ) = v(p0, y0)

▸ CV stands for compensating variation.
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Compensating Variation

▸ Using the relationship between expenditure and indirect utility:

e(p1, v(p0, y0)) = e(p1, v(p1, y0 + CV )) = y0 + CV

▸ using y0 = e(p0, v(p0, y0)) and let v0 = v(p0, y0):

CV = e(p1, v0) − e(p0, v0)

▸ By Shephard’s lemma, ∂e
∂p

= qh(p, y):

CV = ∫
p1

p0

∂e(p, v0)
∂p

dp = ∫
p1

p0
qh(p, v0)dp

▸ Therefore, CV is the area to the left of the Hicksian demand curve
from p0 to p1.

▸ If p1 < p0,CV is the negative of the area: a negative income
adjustment is necessary to restore the original utility level.
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Compensating Variation

▸ One practical problem with CV is that it is based on the Hicksian
demand curve, which we cannot directly observe.

▸ We can observe the Marshallian demand curve, which shows the
total effect of a price change (substitution effect + income effect).
CV is a substitution effect.

▸ The Marshallian demand curve shows consumer surplus.

▸ At (p0, y0), the consumer surplus CS(p0, y0) is the area under the
demand curve and above the price p0.

▸ The change in CS due to a price decrease from p0 to p1 is:

∆CS = CS(p1, y0) − CS(p0, y0) ∫
p0

p1
q(p, y0)dp

▸ ∆CS is opposite in sign to CV .
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Consumer Surplus

▸ We want to know CV , but we can only calculate ∆CS . How good
of an approximation is it?

▸ As long as the income effect is small compared to ∆CS , which is
true if the change in price is small enough.

▸ Note that this is based on the demand curve for a single individual.

▸ If we observe a market demand curve with many individual
consumers, ∆CS will give an approximation of the total amount of
income consumers are willing to give up, but won’t tell us how the
total cost should be distributed among consumers.
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Pareto Efficiency

▸ How can we judge whether a policy or project that will result in a
change in prices and quantities is worth doing?

▸ If it possible to make at least one person better off while no one
becomes worse off, we say that it is possible to make a Pareto
improvement.

▸ If there is no way to make a Pareto improvement, then the situation
is Pareto efficient: there is no change that can be made that would
not make someone worse off.

▸ The idea of Pareto efficiency is widely used in economics to evaluate
the performance of a system.

▸ If a system is Pareto efficient, it is not ”wasting” any resources
(though this concept does not address issues of distribution and
inequality).
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Administrative Stuff

▸ Homework #2 is due at the end of class. I will post the
solutions on the website later today.

▸ The midterm will next week, on April 17.

▸ Midterm will be open-book.

▸ Chapters 1, 2.1, 2.4, 3, and 4.1-4.2 (up to monopoly) will be
covered.

▸ Sample midterms from previous semesters are on the course
website.
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