
Advanced Microeconomic Analysis

Solutions to Homework #1

0.1 A2.9

f(x1, x2) = (x1x2)
2, g(x1, x2) = (x21x2)

3.

(a) f(tx1, tx2) = (tx1 · tx2)2 = t4(x1x2)
2, so homogeneous of degree 4.

(b) g(tx1, tx2) = ((tx1)
2tx2)

3 = (t3x21x2)
3 = t9(x21x2)

3, so homogeneous of degree 9.

(c) f(tx1, tx2)g(tx1, tx2) = t13(x1x2)
2(x21x2)

3, so homogeneous of degree 13.

(d) k(tx1, tx2) = g(f(tx1, tx2), f(tx1, tx2)) = g(t4f(tx1, tx2), t
4f(tx1, tx2)) = (t4)9g(f(x1, x2), f(x1, x2)) =

t36k(tx1, tx2), so homogeneous of degree 36.

(e) Suppose f(x1, x2) is HOD-m and g(x1, x2) is HOD-n. k(tx1, tx2) = g(f(tx1, tx2), f(tx1, tx2)) =
g(tmf(x1, x2), t

mf(x1, x2)) = (tm)ng(f(x1, x2), f(x1, x2)) = tmnk(x1, x2)

0.2 A2.25

For each problem, we form the Lagrangian function, write down the first-order conditions,
and solve for the optimal values.

(d) Objective function: f(x1, x2) = x1 + x2. Constraint: g(x1, x2) = x41 + x42 − 1 = 0.

max
x1,x2

x1 + x2 s.t. x41 + x42 − 1 = 0

L(x1, x2, λ) = x1 + x2 − λ(x41 + x42 − 1)

∂L

∂x1
= x1 − λ4x31 = 0⇒ x1 = λ4x31

∂L

∂x2
= x2 − λ4x32 = 0⇒ x2 = λ4x32

∂L

∂λ
= x41 + x42 − 1 = 0

x1
x2

=
x31
x32
⇒ x1 = x2

Plugging into constraint,

x41 + x41 = 1⇒ x∗1 = 2−
1
4 , x∗2 = 2−

1
4 , λ∗ = 2−

3
2

The maximized value of the objective function is:

x∗1 + x∗2 = 2
3
4

1



(e) Objective function: f(x1, x2) = x1x
2
2x

3
3. Constraint: g(x1, x2, x3) = x1 + x2 + x3 − 1 = 0.

max
x1,x2,x3

x1x
2
2x

3
3 s.t. x1 + x2 + x3 − 1 = 0

L(x1, x2, x3, λ) = x1x
2
2x

3
3 − λ(x1 + x2 + x3 − 1)

∂L

∂x1
= x22x

3
3 − λ = 0

∂L

∂x2
= 2x1x2x

3
3 − λ = 0

∂L

∂x3
= 3x1x

2
2x

3
3 − λ = 0

∂L

∂λ
= x1 + x2 + x3 − 1 = 0

x22x
3
3 = 2x1x2x

3
3 ⇒ x2 = 2x1

2x1x2x
3
3 = 3x1x

2
2x

3
3 ⇒ x3 =

3

2
x2 = 3x1

Plugging into constraint,

x1 + 2x1 + 3x1 − 1 = 0⇒ x∗1 =
1

6
, x∗2 =

1

3
, x∗3 =

1

2

The maximized value of the objective function is:

x∗1x
∗2
2 x

∗3
3 =

1

432

0.3 A2.33

The maximization problem can be written as:

max
x1...xn

f(x1, ..., xn) subject to

g1(x1, ..., xn)− a1 = 0

g3(x1, ..., xn)− a2 = 0

...

gm(x1, ..., xn)− am = 0

Denote the jth constraint as

Gj(x1, ..., xn, a1, ...am) = gj(x1, ..., xn)− aj = 0

The Lagrangian is

L(x1, ..., xn, λ1, ..., λm) = f(x1, ..., xn)−
m∑
i=1

λiG
i(x1, ..., xn, a1, ...am)
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By the Envelope Theorem,
∂V (a1, ...aj)

∂aj
=
∂L

∂aj

=
∂f

∂aj
−

m∑
i=1

λi
∂Gi

∂aj

Since aj does not enter into f(·), the first term is 0. Each ∂Gi

∂aj
term is 0 if i 6= j, and -1 if

i = j. Therefore,
∂V (a1,...aj)

∂aj
= λj .

0.4 1.3

(a) For a binary relation > to be complete, for all x1, x2 in X, one or both of these must
be true: x1 > x2, x2 > x1. We assume the preference relation % is complete, therefore
x1 % x2 is true, x2 % x1 is true, or both are true.

Suppose � is complete. Then at least one of these is true: x � x, x ≺ x. However, both
are false, so � cannot be complete.

Suppose ∼ is complete, and consider x1, x2 such that x1 � x2. Then at least one of these
is true: x1 ∼ x2, x2 ∼ x1. However, both are false, so ∼ cannot be complete.

(b) By the completeness of %, x1 % x2 is true, x2 % x1 is true, or both are.

• Suppose both are true. Then x1 ∼ x2.

• Suppose x1 % x2 is true and x2 % x1 is false. Then x1 � x2.

• Suppose x1 % x2 is false and x2 % x1 is true. Then x2 � x1.

Since these are the only three possibilities, exactly one must hold.

0.5 1.5

(a) By definition, ∼ (x0) = {x|x ∼ x0}. Suppose x ∈∼ (x0). Then x ∼ x0 ⇒ x % x0 and
x0 % x, therefore x ∈ {x|x % x0} ∩ {x|x - x0}, or x ∈% (x0)∩ - (x0).

(d) Suppose x ∈∼ (x0) = {x|x ∼ x0}, therefore x ∼ x0. Then x ≺ x0 is false, therefore x
cannot be in ≺ (x0) = {x|x ≺ x0}.

Suppose x ∈≺ (x0), therefore x ≺ x0. Then x ∼ x0 is false, therefore x cannot be in
∼ (x0).

Combining both statements, the intersection of ∼ (x0) and ≺ (x0) is empty.
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0.6 1.8

One possible set of indifference curves is shown above. The upper level sets are convex, but not
strictly convex, therefore these preferences are quasiconcave, but not strictly quasiconcave.

0.7 1.12

Suppose u(x1, x2) and v(x1, x2) are utility functions.

(a) s(tx1, tx2) = u(tx1, tx2)+v(tx1, tx2) = tru(x1, x2)+t
rv(x1, x2) = tr(u(x1, x2)+v(x1, x2)) =

trs(x1, x2)

(b) We will show that the level sets of m(x1, x2) = min [u(x1, x2), v(x1, x2)] are convex. For a
given utility level u, the level set of m is {(x1, x2)|m(x1, x2) ≥ u} = {(x1, x2)|u(x1, x2) ≥
u and v(x1, x2) ≥ u}. Therefore, for a given utility level u, the level set of m is the
intersection of the level sets of u and v. By assumption, u and v are quasiconcave,
therefore their level sets are convex. The intersection of convex sets is also convex, so m
is also quasiconcave.

0.8 1.20

Suppose u(x1, x2) = Axα1x
1−α
2 , 0 ≤ α ≤ 1, A > 0. The utility maximization problem is:

max
x1,x2

Axα1x
1−α
2 s.t. p1x1 + p2x2 − y = 0

L(x1, x2, λ) = Axα1x
1−α
2 + λ(p1x1 + p2x2 − y)
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∂L

∂x1
= Aαxα−1

1 x1−α2 − λp1 = 0

∂L

∂x2
= A(1− α)xα1x

−α
2 − λp2 = 0

∂L

∂λ
= p1x1 + p2x2 − y = 0

Combining ∂L
∂x1

and ∂L
∂x2

, we get

α

1− α
x2
x1

=
p1
p2
⇒ x2 =

p1
p2

1− α
α

x1

Plugging into budget constraint,

p1x1 + p2
p1
p2

1− α
α

x1 = y ⇒ x∗1 =
αy

p1
, x∗2 =

(1− α)y

p2

0.9 1.21

Suppose u(x1, x2) = log(Axα1x
1−α
2 ) = log(A) + α log(x1) + (1 − α) log(x2), 0 ≤ α ≤ 1, A > 0.

The utility maximization problem is:

max
x1,x2

log(A) + α log(x1) + (1− α) log(x2) s.t. p1x1 + p2x2 − y = 0

L(x1, x2, λ) = log(A) + α log(x1) + (1− α) log(x2)− λ(p1x1 + p2x2 − y)

∂L

∂x1
=

α

x1
− λp1 = 0

∂L

∂x2
=

α

x2
− λp2 = 0

∂L

∂λ
= p1x1 + p2x2 − y = 0

Combining ∂L
∂x1

and ∂L
∂x2

, we get
α

1− α
x2
x1

=
p1
p2

which is the same as in problem 1.20. Therefore, the generated Marshallian demand will be
the same.

0.10 1.27

Suppose u(x1, x2) = max(ax1, ax2) + min(x1, x2) = amax(x1, x2) + min(x1, x2), 0 ≤ a ≤ 1.
This is not a differentiable function, so we can’t use calculus methods to solve this problem.
Let’s examine the shape of the indifference curves, given a utility level u.

• If x1 > x2, then u(x1, x2) = ax1 + x2 = u⇒ x2 = u− ax1

• If x1 < x2, then u(x1, x2) = x1 + ax2 = u⇒ x2 = u
a −

x1
a
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• If x1 = x2, then u(x1, x2) = (1 + a)x1 = (1 + a)x2 = u.

The indifference curves for a = 0.7 are shown below:

0 1 2 3 4 5 6
0

1

2

3

4

5

6

The optimal solution(s) will depend on the slope of the budget line, −p1
p2

.

• If −p1
p2
< − 1

a , the optimal solution will be the corner solution at (0, y/p2).

• If −p1
p2

= − 1
a , all points on the upper half of the indifference curve are optimal.

• If −a > −p1
p2

> − 1
a , the only optimal solution is the point on the 45-degree line,

( y
p1+p2

, y
p1+p2

).

• If −a = −p1
p2

, all points in the lower half of the indifference curve are optimal.

• If −a < −p1
p2

, the optimal solution will be the corner solution at (y/p1, 0).

0.11 1.33

Suppose we have the indirect utility function v(p, y) which is the maximized value of some
utility function u(x). We apply the positive, monotonic transform f(·) to get f(v(p, y)). If
we can show that this is the maximized value of some utility function v(x), and that v(·)
represents the same preferences as u(·) (i.e. given (p, y), the solutions for maximizing u(x)
and v(x) are the same), then we are done.

Suppose that v(·) is the result of applying f(·) to u(·): v(x) = f(u(x)). We know that applying
a positive, monotonic transform to a utility function gives us another utility function that
represents the same preferences (see Theorem 1.2 in Chapter 1). The last thing we need to
show is that f(v(p, y)) is the indirect utility function of f(u(x)), that is, for any (p, y),

max
x

f(u(x)) = f(v(p, y)) = f
(

max
x

u(x)
)
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This is true because f(·) is monotonic: f(a) ≥ f(b) iff a ≥ b. Therefore, we have proven the
statement.
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