Topics in Bank Management: Lecture 8

Ronaldo Carpio

May 4, 2015

Ronaldo Carpio Topics in Bank Management: Lecture 8

- 4 回 2 - 4 □ 2 - 4 □

- You will write a proposal for a research article (6-8 pages).
- This will be due at the end of the semester.
- It will have the following sections:
 - Introduction (defines the main question and explains why it is important);
 - Literature review (what has been done so far and what questions remain unanswered);
 - Methodology (if a theory paper, explain the type of model you will use. If empirical, explain the data sources. In either case, list the potential problems that may be encountered)

(4月) (1日) (日)

Research Proposal

- The first task is to come up with a *research topic*.
- This may be theoretical or empirical.
- Theory: you would like to explain some real-world situation as the outcome of optimal behavior by agents (may be a game, with asymmetric information, etc).
- Empirical: you would like to test if the data supports a model you've seen presented elsewhere.
- I will send you some collections of papers that may give you some ideas about a research topic.
- Let's aim for settling on a topic within the next two weeks.
- You can email me at any time, and I will give you feedback on the novelty of the idea and where to start looking for the literature review.

・ロン ・回と ・ヨン・

Diamond-Dybvig Model

- There are three time periods: t = 0, 1, 2.
- There is 1 good.
- A continuum of consumers who are identical at t = 0 are endowed with 1 unit of the good.
- At t = 1, the consumers learn what type they are.
 - Type-1 consumers are called "early" consumers, and consume only in t = 1, with utility u(c1)
 - Type-2 consumers are called "late" consumers, and consume only in t = 2, with utility u(c₂)
- Let π_1, π_2 be the probability of being Type-1 or 2. The expected utility at t = 0 is

$$U = \pi_1 u(c_1) + \pi_2 u(c_2)$$

・ 回 と ・ ヨ と ・ ヨ と

- At t = 0, a consumer can choose to consume his endowment, or save it in two ways:
 - Store it for 1 period. This is equivalent to a riskless asset with a net return of 1.
 - Invest amount I in a long-run technology, which gives a net return of R > 1 at t = 2, but it can be *liquidated* early, to give a return of L < 1 in t = 1.</p>
- For example, a long-dated certificate of deposit, or a long-term construction project.

・ 同 ト ・ ヨ ト ・ ヨ ト

Optimal Allocation

First, let's look at the optimal allocation, which maximizes expected utility at t = 0.

$$\max_{c_1, c_2, l} \pi_1 u(c_1) + \pi_2 u(c_2) \qquad \text{subject to}$$

$$\pi_1 c_1 = 1 - I, \pi_2 c_2 = RI \Rightarrow \pi_1 c_1 + \pi_2 \frac{c_2}{R} = 1$$

The first order condition is

$$u'(c_1^*) = Ru'(c_2^*)$$

The marginal rate of substitution between consumption at t = 1,2 equals the return on the long-run technology.

・回 ・ ・ ヨ ・ ・ ヨ ・

æ

Autarky: No Trade Between Agents

- Suppose that trade between agents is not allowed.
- At t = 0, each agent chooses the amount to store, and the amount to invest I.
- Then at t = 1, their type is revealed.
 - Type-1 agents' income will be the amount they stored, plus LI (the liquidation value of what was invested in t = 0)

$$c_1 = 1 - l + Ll = 1 - l(1 - l)$$

Type-2 agents' will continue their storage until t = 2. Then, their income will be the amount they stored, plus RI (the long-term return on what was invested in t = 0)

$$c_2 = 1 - I + RI = 1 + I(R - 1)$$

イロト イポト イヨト イヨト

Autarky: No Trade Between Agents

 Type-1 agents' income will be the amount they stored, plus LI (the liquidation value of what was invested in t = 0)

$$c_1 = 1 - I + LI = 1 - I(1 - I)$$

Type-2 agents' will continue their storage until t = 2. Then, their income will be the amount they stored, plus RI (the long-term return on what was invested in t = 0)

$$c_2 = 1 - I + RI = 1 + I(R - 1)$$

- At t = 0, all investors will maximize expected utility subject to these two constraints.
- Note that $c_1 \leq 1$, with equality if I = 0.
- $c_2 \leq R$, with equality if I = 1.

(日本) (日本) (日本)

- Note that $c_1 \leq 1$, with equality if I = 0.
- $c_2 \leq R$, with equality if I = 1. Since both cannot hold, then

$$\pi_1c_1+\pi_2\frac{c_2}{R}<1$$

 This is inefficient, since some resources are lost due to early liquidation.

・ 同 ト ・ ヨ ト ・ ヨ ト

Introduce a Financial Market for Bonds

- Suppose that agents are allowed to trade a riskless bond with other agents.
- We model this by introducing a financial market at t = 1: agents can trade 1 unit of the good for 1 riskless bond that has price p (endogenously determined), and returns 1 at t = 2.
- We will assume agents are price-takers.
- Since this is after agents' types have been revealed, Type 1 agents will trade with Type 2 agents.
- Both Type 1 and Type 2 agents chose the same amount of *I*, since their type was not yet revealed.

Introduce a Financial Market for Bonds

- Both Type 1 and Type 2 agents chose the same amount of *I*, since their type was not yet revealed.
- Type 1 agents will sell bonds at t = 1. They will repay these bonds at t = 2 with the returns of the long-term technology:

$$c_1 = 1 - I + pRI$$

Type 2 agents will buy bonds at t = 1 with the amount they stored, and get extra consumption at t = 2:

$$c_2 = \frac{1-I}{p} + RI = \frac{1}{p}(1-I+pRI)$$

・ 同 ト ・ ヨ ト ・ ヨ ト

Type 1 agents will sell bonds at t = 1. They will repay these bonds at t = 2 with the returns of the long-term technology:

$$c_1 = 1 - I + pRI$$

Type 2 agents will buy bonds at t = 1 with the amount they stored, and get extra consumption at t = 2:

$$c_2 = \frac{1-I}{p} + RI = \frac{1}{p}(1-I+pRI)$$

Introduce a Financial Market for Bonds

$$c_{1} = 1 - I + pRI$$

$$c_{2} = \frac{1 - I}{p} + RI = \frac{1}{p}(1 - I + pRI)$$

- Note that c_1 and c_2 are linear functions of I, and $c_2 = \frac{c_1}{p}$.
- The only interior equilibrium occurs when $p = \frac{1}{R}$.
- If $p > \frac{1}{R}$, then l = 1 and there is an excess supply of bonds: Type-1 agents will sell bonds, but no one will buy them
- If $p < \frac{1}{R}$, then I = 0 and there is excess demand of bonds: Type-2 agents want to buy bonds, but no one will sell them

・ロト ・回ト ・ヨト ・ヨト

Introduce a Financial Market for Bonds

- At equilibrium, $c_1 = 1, c_2 = R, I = \pi_2$.
- This Pareto-dominates the autarky solution since there is no liquidiation, therefore no wasted resources.
- However, the first-order condition $u'(c_1^*) = Ru'(c_2^*)$ is not satisfied.
- Efficiency is acheived when there is *perfect insurance*: the marginal utility is equalized across all possible states of the world (that is, all possible random outcomes).
- In a complete market (i.e. there is a security corresponding to every outcome), risk-averse agents will perfectly insure.
- This market, however, is incomplete, since there is no security corresponding to the outcome of the liquidity shock (Type 1 vs. Type 2).

(ロ) (同) (E) (E) (E)

- Suppose we know what the optimal allocation (c_1^*, c_2^*) is.
- This allocation can be implemented by a *fractional reserve* system, in which banks invest a fraction of deposits, while offering them withdrawal on demand.
- A deposit contract (C_1, C_2) between depositors and the bank specifies the amounts C_1, C_2 which can be withdrawn at t = 1, 2.
- Competition between banks leads them to offer the optimal contract (c₁^{*}, c₂^{*}).
- Will the banks be able to fulfull their contractual obligations in all circumstances?

- Consider a late consumer who believes the bank will be able to fulfill its obligations.
- The consumer has the choice to:
 - withdraw c₂^{*} at t = 2 (and leave money in the bank at t = 1), or;
 - withdraw c_1^* at t = 1 and store it until t = 2.
- From the first-order condition of the optimal allocation:

$$Ru'(c_2^*) = u'(c_1^*)$$

• Since R > 1 and u' is decreasing, then $c_2^* > c_1^*$.

(日本) (日本) (日本)

Fractional Reserve Banking

- We can formulate this as a game between depositors.
- A late consumer who trusts the bank will always prefer to withdraw at *t* = 2.
- By the law of large numbers, the proportion of withdrawals at t = 1 will be π_1 , the fraction of early consumers.
- The bank has to keep exactly $\pi_1 c_1^*$ in liquid reserves on hand, to satisfy early consumers.
- Then, the bank will be solvent with probability 1, and late consumers' beliefs will be consistent.
- This is a Nash equilibrium that implements the optimal allocation.

- Now, suppose that each late consumer believes all other late consumers will withdraw at t = 1.
- The bank must liquidate its long-term investment, yielding a total of $\pi_1 c_1^* + (1 \pi_1 c_1^*)L < 1$
- This is less than the total value of liabilities c_1^* , so the bank will fail and nothing will be left at t = 2.
- The best response for a late consumer is to withdraw at t = 1.
- This is a second Nash equilibrium in which all depositors withdraw at t = 1 and the bank is liquidated.
- This is called an *inefficient* bank run.

(日) (同) (E) (E) (E)

- One natural response to the instability of the banking system is for regulators to *require* that banks be able to fulfill their obligations, under *any possible circumstance*.
- This idea is called *narrow banking*.
- Banks must maintain enough liquidity to guarantee payment to all depositors. But there are multiple interpretations of what this means. For example:
 - Banks must be able to withstand a run without liquidating any holdings;
 - Banks may liquidate its long-run technology to face a bank run;
 - Banks may securitize its long-run technology to face a bank run.

- 4 回 ト 4 ヨ ト 4 ヨ ト

- In the first interpretation of narrow banking, the bank must have a reserve ratio of 100 %.
- That is, it must have enough cash on hand to satisfy the possibility that *all* depositors withdraw at the same time.
- If *I* is the amount invested in the long-term technology, then 1 I must be at least equal to C_1 , the maximum possible amount of withdrawals at t = 1.
- The deposit contract (C_1, C_2) must satisfy $C_1 \leq 1 I, C_2 \leq RI$.
- This option has the least amount invested in the long-term technology, so it results in a lower expected utility for depositors than even the autarkic situation.

・ロト ・回ト ・ヨト ・ヨト

- The second interpretation allows the bank to liquidate its long-term technology before facing a bank run.
- The amount *I* must satisfy $C_1 \leq LI + (1 I)$.
- The liquidation value LI plus the cash on hand 1 I is enough to cover C_1 .
- ▶ Therefore, at t = 2, $C_2 \le RI + 1 I$, which is equivalent to the autarkic situation.

(日) (同) (E) (E) (E)

- The third interpretation allows securitization of the bank's long-term assets.
- This requires that there be a well-functioning market for the bank's long-term assets.
- Alternatively, the bank may be restricted to only investing in riskless financial securities.
- This is equivalent to the financial market situation, where there is a riskless bond traded in additional to the long-term technology.
- As we have seen, this is still not as efficient as the financial intermediation outcome.

(日本) (日本) (日本)

- In the Diamond-Dybvig model we've been looking at so far, both the efficient outcome (no bank run) and the bank run outcome are Nash equilibria.
- The only thing that causes one outcome or the other is the beliefs of the late consumers.
- If regulation could change their beliefs without incurring too much of a cost elsewhere, this could be an effective regulation strategy to protect against bank runs.

・ 同 ト ・ ヨ ト ・ ヨ ト …

- One possibility is suspension of convertibility: the bank, or the government, could simply declare that the bank will limit the number of withdrawals at t = 1.
- In the model, if the bank announces it will not allow more than $\pi_1 C_1$ withdrawals at t = 1.
- Late consumers will have the belief that the bank can satisfy withdrawals at t = 2, and will have no incentive to withdraw early.
- The only equilibrium is the one with no bank run, so in equilibrium, suspension never actually takes place.

(日本) (日本) (日本)

- This is sometimes called a "bank holiday".
- Technically, this is a violation of the bank's contractual obligations, so it can also damage the public's trust in the financial system.
- Additionally, if the underlying problem is not solved, then depositors will simply wait until suspension is lifted to start withdrawing again.
- In the United States during the late 19th-early 20th centuries, the banking system suspended convertibility eight times (Gorton 1985).
- "A curious aspect of suspension is that despite its explicit illegality, neither banks, depositors, nor the courts opposed it at any time."
- This indicates that the bank run was indeed simply a coordination problem.
- There are other possible situations in which the bank run is *efficient*; we will examine this later

・ロト ・回ト ・ヨト ・ヨト

Deposit Insurance

- Suspension of convertibility requires that the fraction of early consumers be known ahead of time.
- If π_1 is random, then bank runs may still occur, since it is uncertain if there will be enough cash to satisfy all withdrawals
- To prevent bank runs completely, convertibility must be suspended as soon as the *smallest* realization of π₁ is observed
- However, if the realization of π_1 is larger than the smallest amount, some early consumers will be unable to withdraw
- An alternative solution to prevent bank runs is *deposit insurance*.
- A third party, perhaps the government, promises to repay the depositors in case of a bank run.
- The government can fund insurance with a tax based on the realization of π_1 .

- Deposit insurance can lead to problems of moral hazard.
- Given deposit insurance, depositors have no incentive to monitor their bank.
- This gives an incentive for excessive risk-taking at the bank.
- Note that in the Diamond-Dybvig model, the bank itself is not an agent with a utility function; it is simply interpreted as a contract.
- Later on we'll see models of the bank itself as a self-interested agent.

・ 同 ト ・ ヨ ト ・ ヨ ト

- Homework #2 is due next week.
- Please start thinking about a topic for a research article.

・回 ・ ・ ヨ ・ ・ ヨ ・

æ