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Announcements

▸ Homework #3 is due at the end of class.
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Ch 7.2: Entry into a monopolized industry

▸ Consider a model that combines the Entry Game with Cournot
Duopoly.

▸ There is an industry which is currently monopolized by the
Incumbent firm.

▸ A Challenger firm is deciding whether to choose In or Out.

▸ If In is chosen, Challenger has to pay a cost of entry f ; then both
firms face Cournot duopoly.

▸ If Out is chosen, Challenger makes zero profit while Incumbent
faces a monopoly problem.
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Ch 7.2: Entry into a monopolized industry

▸ Assume the same parameters as in the Cournot duopoly we’ve seen
before:

▸ Cost of production Ci(qi) = cqi , i.e. constant marginal cost, equal
for both firms.

▸ Inverse market demand is given by:

Pd(Q) =

⎧
⎪⎪
⎨
⎪⎪
⎩

α −Q if α ≥ Q

0 if α < Q
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Subgame after In

▸ Consider the subgame if In is chosen. We know the outcome of the
Cournot duopoly game in this case is:

▸ qincumbent = qchallenger = (α − c)/3. Both firms choose the same
output

▸ Incumbent’s profit is: πincumbent =
1
9
(α − c)2

▸ Challenger ’s profit is: πchallenger =
1
9
(α − c)2 − f
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Subgame after Out

▸ Consider the subgame if Out is chosen. This is a standard monopoly
problem where the Incumbent firm chooses q to maximize

π(q) = q(α − q) − cq

▸ The optimal value of q is (α − c)/2.

▸ Incumbent’s profit is 1
4
(α − c)2

▸ Challenger ’s profit is 0.
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Challenger ’s first move

▸ Subgame after In:

▸ Incumbent’s profit: πincumbent =
1
9
(α − c)2

▸ Challenger ’s profit: πchallenger =
1
9
(α − c)2 − f

▸ Subgame after Out:

▸ Incumbent’s profit is: πincumbent =
1
4
(α − c)2

▸ Challenger ’s profit is: πchallenger =
1
9
(α − c)2 − f

▸ Challenger will choose In if 1
9
(α − c)2 − f > 0 and Out if

1
9
(α − c)2 − f < 0.

▸ If they are equal, there are two SPNE outcomes, one where
Challenger chooses In and one where it chooses Out.
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Ch 7.6: Allowing for exogenous uncertainty

▸ So far, all the extensive games we’ve seen have been deterministic:
no randomness in outcomes.

▸ We can allow randomness by introducing an additional player, called
”Chance” or ”Nature”

▸ Nature makes choices randomly, according to a known probability
distribution.

▸ Players’ preferences are now over lotteries.

▸ As before, we will assume von Neumann-Morgenstern preferences
(i.e. lotteries are valued by their expected payoff).
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Ch 7.6: Allowing for exogenous uncertainty

▸ Consider this game with chance moves.

▸ Here, ”c” is the Chance player, who chooses randomly between two
branches, each with probability 1/2.

▸ This is still a game with perfect information: at each player’s move,
he knows exactly what sequence of moves has occurred in the past.

▸ In the last subgame, Player 2 chooses C , so this subgame has a
payoff of (0,1).
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Ch 7.6: Allowing for exogenous uncertainty

▸ In the subgame following B, Chance chooses each action with
probability 1

2
.

▸ The expected payoff to Player 1 of this subgame is therefore
1
2

3 + 1
2

0 = 1.5.

▸ The expected payoff to Player 2 of this subgame is 1
2

0 + 1
2

1 = 0.5.

▸ At the beginning, Player 1 chooses B, since the expected payoff of
B is greater than the expected payoff of A.
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Exercise 227.2: Firm-Union Bargaining

▸ Suppose a firm and a union are bargaining over how to split the
”surplus”, i.e. the profits before labor has been paid.

▸ Surplus is a random variable, that takes on the value H with
probability p, and L < H with probability 1 − p.

▸ The sequence of the game is as follows:

▸ First, the union (who does not know the outcome of the
surplus, just its distribution) makes a demand x ≥ 0.

▸ The firm, who does know what the surplus (denoted z) is, can
choose to Accept or Reject. If Accept is chosen, the union
gets x and the firm gets z − x . If Reject is chosen, both players
get 0.
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Exercise 227.2: Firm-Union Bargaining

Union

Chance

FirmFirm

AcceptAccept Reject Reject

H (p) L (1-p)

x

(0, 0)(0, 0) (x, L-x)(x, H-x)
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Exercise 227.2: Firm-Union Bargaining

Union

Chance

FirmFirm

AcceptAccept Reject Reject

H (p) L (1-p)

x

(0, 0)(0, 0) (x, L-x)(x, H-x)

▸ Note that ”Chance” moves after the union but before the firm; this
is how we ensure that the firm makes its choice with the knowledge
of the outcome of the surplus.

▸ Again, note that this game has perfect information.

▸ Assume that in case of a tie in payoffs, the firm chooses Accept.

Prof. Ronaldo CARPIO CUR 412: Game Theory and its Applications, Lecture 10



Exercise 227.2: Firm-Union Bargaining

Union

Chance

FirmFirm

AcceptAccept Reject Reject

H (p) L (1-p)

x

(0, 0)(0, 0) (x, L-x)(x, H-x)

▸ We can solve this with backwards induction:

▸ In the bottom left subgame, take x as given. The firm will
choose Accept if H − x ≥ 0.

▸ In the bottom right subgame, take x as given. The firm will
choose Accept if L − x ≥ 0.
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Exercise 227.2: Firm-Union Bargaining

Union

Chance

FirmFirm

AcceptAccept Reject Reject

H (p) L (1-p)

x

(0, 0)(0, 0) (x, L-x)(x, H-x)

▸ Taking the firm’s actions as given, the union chooses x . Let’s
consider the possible cases for x :

▸ Suppose x ≤ L. Then x < H as well, so the firm will Accept if either
H or L is the outcome. The expected payoff to the union is:
px + (1 − p)x = x .
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Exercise 227.2: Firm-Union Bargaining

Union

Chance

FirmFirm

AcceptAccept Reject Reject

H (p) L (1-p)

x

(0, 0)(0, 0) (x, L-x)(x, H-x)

▸ Suppose L < x ≤ H. The firm will Accept if H is the outcome, but
will Reject if L is the outcome. The expected payoff is:
px + (1 − p)0 = px .

▸ Suppose H < x . The firm will always Reject, so the expected payoff
is 0.
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Exercise 227.2: Firm-Union Bargaining

L H

x

slope = p
slope = 1

L

pH

▸ We can plot the expected payoff as a function of x .

▸ If L > pH, then x = L is the optimal action for the union.

▸ If L < pH, then x = H is the optimal action.

▸ If L = pH, then either is optimal for the union, and there is more
than one SPNE outcome.
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Interpretation of Subgame Perfect NE

▸ What does a SPNE correspond to in ”real life”?

▸ When we studied NE of strategic games, we saw one possible
interpretation:

▸ A steady state that occurs in a repeated situation where people are
drawn from different populations (each population corresponds to a
different player type).

▸ For mixed NE, people are randomly drawn from fractions of a
population, with each fraction always choosing an action.

▸ Or: people randomly choose from their set of actions.

▸ These interpretations apply to masses of social interactions, but not
an individual interaction.
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Interpretation of Subgame Perfect NE

▸ It’s possible to imagine an individual interaction as a NE, but that
requires some assumptions:

▸ All players are completely rational, and they know each others’
payoff functions and the probability distributions of any
sources of randomness

▸ They also know all levels of higher-order knowledge: Player 1
knows what Player 2 knows, and Player 3 knows what Player 1
knows what Player 2 knows, ...

▸ Players then simulate all possible strategies in their mind, and
then choose one that happens to be a NE

▸ This becomes more implausible as the game gets more complicated.
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Interpretation of Subgame Perfect NE

▸ For a SPNE of an extensive game, it’s hard to apply the ”steady
state” interpretation.

▸ We can interpret the process of backward induction as reasoning
about what will happen in the future.

▸ If all players are rational, they will end up choosing a SPNE strategy
profile.

▸ But what if we find ourselves in a history that is not rational?

▸ Not clear what to believe at that point - you could continue as if all
players were rational, but you have evidence that they are not.
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Centipede Game

▸ Let’s play this extensive game.

▸ I will choose two people to be Player 1 and Player 2.

Prof. Ronaldo CARPIO CUR 412: Game Theory and its Applications, Lecture 10



Centipede Game

▸ The SPNE is for Player 1 to end the game by choosing s on the first
move.

▸ However, that gives the lowest payoff to Player 2 and the second
lowest payoff to Player 1.

▸ Empirically, people cooperate until they are near the end, even after
they know what the SPNE is.

▸ One possible answer is that one of the assumptions of SPNE does
not hold: common knowledge of rationality.

▸ In the real world, people are not completely certain that the other
player will always choose to end the game as soon as possible.
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Chapter 10: Extensive Games with Imperfect Information

▸ Up to now, the extensive games we have studied have been games
with perfect information, i.e. players always know exactly what has
happened in the past when making decisions.

▸ This eliminates any kind of uncertainty about the past, e.g:

▸ What if moves by another player are unknown (as in
simultaneous-move games)?

▸ What if some parameter of the game or the players depends on
a random variable?

▸ We can allow for uncertainty in this way: if information about the
past is hidden from a player when he makes his decision, we’ll say
the player cannot distinguish between histories (nodes) that differ
based on that information.
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BoS as an Extensive Game with Imperfect Information

▸ Consider the simultaneous-move game BoS.

▸ We cannot model this as an extensive game with perfect
information, because each player must not know what the other
player chose.

▸ With imperfect information, we can model the game this way:

▸ Assume Player 1 moves first, choosing B or S , but this
information is hidden from Player 2.

▸ Player 2 cannot distinguish between the history where Player 1
chose B and where he chose S .
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2

1

2

B

B

B SS

S

(2,1) (1,2)(0,0)(0,0)

▸ On the tree diagram, we denote this with a dashed line connecting
the two nodes.

▸ We call this group of nodes (i.e. a group of histories) an
information set of Player 2.

▸ The actions available to a player at all histories (nodes) in an
information set must be the same.

▸ Note that we could also represent BoS as an extensive game where
Player 2 moves first, and Player 1’s information set contains B and
S .
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2

1

2

B

B

B SS

S

(2,1) (1,2)(0,0)(0,0)

▸ With imperfect information, our definition of subgame must be
modified.

▸ if a subgame contains a node in an information set, it must contain
all the nodes in that information set (i.e. it makes no sense to have
a game where not all the actions are specified).

▸ The extensive form of BoS has only one subgame, since we cannot
split Player 2’s information set.
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2

1

2

B

B

B SS

S

(2,1) (1,2)(0,0)(0,0)

▸ We can convert extensive games with imperfect information into
strategic form, just as before.

▸ We can also allow for pure and mixed strategies in the strategic
form.

▸ A pure strategy must specify an action at every information set.

▸ A mixed strategy must specifiy a probability distribution over
actions at every information set.

▸ In the extensive form of BoS, both players have a single information
set, at which the set of possible actions is B and S ; so a strategy
would specify a single distribution over B,S .

Prof. Ronaldo CARPIO CUR 412: Game Theory and its Applications, Lecture 10



▸ Recall the firm-union bargaining game with exogenous uncertainty
from last week. In that example:

1. The union offers w .
2. Chance chooses the surplus to be L or H randomly.
3. The firm observes Chance’s choice, and chooses Accept or

Reject.

▸ This is a game with perfect information, since every player who
moves after a random choice, knows what the outcome was.

▸ Suppose we change the order of moves to the following:

1. Chance chooses the surplus to be L or H randomly.
2. The union offers w .
3. The firm observes Chance’s choice, and chooses Accept or

Reject.

▸ This becomes a game with imperfect information.
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Perfect Information

Union

Chance

FirmFirm

AcceptAccept Reject Reject

H (p) L (1-p)

x

(0, 0)(0, 0) (x, L-x)(x, H-x)
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Imperfect Information

▸ In this diagram, the firm knows what the surplus is, so the firm’s
strategy can specify different actions depending on whether L or H
occurred.

▸ The union does not know, so its strategy cannot condition on L or
H.
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Beliefs over Histories

▸ Many interesting situations involve uncertainty due to a random
outcome in the past.

▸ In Chapter 7, we saw how to incorporate randomness by adding a
player called ”Chance” or ”Nature”, who chooses actions randomly,
according to a known probability distribution.

▸ Imperfect information is a natural way to handle randomness in
games.

▸ Note that with randomness, we must now assume preferences over
lotteries; specifically, we will assume von Neumann-Morgenstern
utilities (i.e. lotteries are valued based on expected payoff).

Prof. Ronaldo CARPIO CUR 412: Game Theory and its Applications, Lecture 10



Beliefs over Histories

▸ Suppose it is a player’s turn to move, and his information set has
more than one history (node).

▸ His future payoffs may depend on which history he is actually in.

▸ In order to be able to calculate his payoffs to his actions, he needs
some way to quantify his beliefs about which history has actually
occurred.

▸ We will use probability distributions over histories in an information
set to model beliefs about what has happened in the past.

▸ This will use concepts of conditional probability and Bayes’ rule.
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Review of Probability

▸ Suppose we have a random experiment with a range of possible
outcomes.

▸ For example: we roll a 4-sided dice, with sides labeled 1, 2, 3, 4.
Call the result X .

▸ The universe U is the set of all possible outcomes of the world.

▸ In this case, U = {1,2,3,4}.

▸ An event is a set of outcomes.

▸ Examples of events

▸ The set of all possible outcomes, U.
▸ The empty set ∅.
▸ The set of outcomes where X ≤ 2: {1,2}.
▸ The set of outcomes where X is even:: {2,4}.
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Review of Probability

▸ The probability of an event (that is, set of states) is a number
between 0 and 1 assigned to each event. What determines this
number?

▸ First, let’s talk about the frequentist view of probability.

▸ In the frequentist view, the probability of event A, denoted P(A), is
the frequency at which we would observe an outcome in A, if we ran
the experiment an infinite number of times.
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Subjectivist View of Probability

▸ In the subjectivist view, probability is a belief in an individual’s
mind, based on past experience, logic, and whatever else leads the
individual to believe that something is likely or unlikely to happen.

▸ In the subjectivist view, probabilities apply to any uncertain
situation, not just one that can be replicated an infinite number of
times. For example:

▸ What is the probability that you will get married before age 30?
▸ What is the probability that there is life on other planets?

▸ These are one-time events in the future or even the past. It makes
no sense to talk about replicating them, but we have varying levels
of belief in them.

▸ Regardless of one’s view of where probability numbers come from,
they must satisfy certain rules.
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Laws of Probability

▸ For any event A, P(A) ≥ 0.

▸ P(U) = 1.

▸ ¬A is the set of all outcomes that are not in A. P(¬A) = 1 − P(A)

▸ A ∪B is the event that the outcome is in A or in B.

▸ If A and B are disjoint (i.e. no outcome is in both A and B), then
P(A ∪B) = P(A) + P(B).

▸ This extends to A1,A2, ...An: if these are all disjoint, the
P(A1 ∪ ... ∪An) = P(A1) + ...P(An).

▸ A ∩B is the event that the outcome is in A and in B.

▸ Two events are independent if P(A ∩B) = P(A)P(B).
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Examples

▸ Consider our 4-sided dice roll, with result X . Assume the dice is
unbiased: each side occurs with equal probability 1

4
.

▸ Let A be the event that X ≤ 2. Then P(A) = 1
2

.

▸ Let B be the event that X is even. Then P(A) = P(2) + P(4) = 1
2

.

▸ P(A ∩B) = P(2) = 1
4

, which is equal to P(A)P(B). Therefore,
events A and B are independent.
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Conditional Probability

▸ If we know one event A has occurred, does that affect the
probability that another event B has occurred?

▸ Suppose we are told that event A has occurred. Then P(A) > 0,
and every outcome outside of A is no longer possible.

▸ Therefore, the universe is reduced to A. The only part of B which
can occur is A ∩B.

▸ Since total probability of the universe must equal 1, the probability
of A ∩B must be scaled by 1

P(A)

P(B ∣A) =
P(B ∩A)

P(A)
,P(B ∩A) = P(A)P(B ∣A)

Prof. Ronaldo CARPIO CUR 412: Game Theory and its Applications, Lecture 10



Conditional Probability

P(B ∣A) =
P(B ∩A)

P(A)
,P(B ∩A) = P(A)P(B ∣A)

▸ B ∩A and ¬B ∩A are disjoint, and their union is A. Therefore,
P(B ∩A) + P(¬B ∩A) = P(A).

P(B ∣A) =
P(B ∩A)

P(A)
=

P(B ∩A)

P(B ∩A) + P(¬B ∩A)

▸ P(B ∣A) is the probability of B conditional on A occurring.
Equivalently,

P(A∣B) =
P(A ∩B)

P(B)
=

P(A ∩B)

P(A ∩B) + P(¬A ∩B)
,P(A∩B) = P(B)P(A∣B)
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Bayes’ Theorem

P(B ∣A) =
P(B ∩A)

P(A)
=

P(B ∩A)

P(B ∩A) + P(¬B ∩A)
,P(B ∩A) = P(A)P(B ∣A)

▸ Using the result P(B ∩A) = P(B)P(A∣B) and
P(¬B ∩A) = P(¬B)P(A∣¬B), we get

P(B ∣A) =
P(A∣B)P(B)

P(A∣B)P(B) + P(A∣¬B)P(¬B)

▸ This is known as Bayes’ Theorem. It is simply substituting in

different formulas for P(B∩A)
P(A)

.

▸ Using this formula, we can calculate the probability of any event
conditional on any other event, if we know the all of the other
probabilities in the formula.
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Example

▸ Consider again the 4-sided dice that gives value X ∈ {1,2,3,4}.
Suppose that the dice is no longer unbiased:

P(1) = P(2) = P(3) = 0.2,P(4) = 0.4

▸ A is the event that X ≤ 2. P(A) = 0.4

▸ B is the event that X is even. P(B) = 0.6

▸ P(A ∩B) = 0.2, which is different from P(A)P(B) = 0.24.
Therefore, A and B are not independent.

P(A∣B) =
P(A ∩B)

P(A)
=

0.2

0.6
=

1

3

P(B ∣A) =
P(A ∩B)

P(B)
=

0.2

0.4
=

1

2
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Example

▸ Here’s an real-world example of using Bayes’ Theorem:

▸ Suppose in the general population, we observe that 1.4% of women
whose age 40-49 develop breast cancer.

▸ A mammogram is a diagnostic test to predict breast cancer. We
know that it has a 10% false positive rate: when the test is used on
someone who does not have cancer, it says they do 10% of the time.

▸ The test has a 25% false negative rate: when the test is used on
someone who does have cancer, it says they do 75% of the time.

▸ Suppose a woman gets a mammogram and it gives a positive result.
What is the probability that she has cancer, knowing nothing else?

▸ Let B be the event that she has cancer, and A the event that the
test gives a positive result.

▸ We want to find P(B ∣A), which is:

P(B ∣A) =
P(A∣B)P(B)

P(A∣B)P(B) + P(A∣¬B)P(¬B)
=

1.4% × 0.75

1.4% × 0.75 + 98.6% × 0.1
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Example

P(B ∣A) =
P(A∣B)P(B)

P(A∣B)P(B) + P(A∣¬B)P(¬B)
=

1.4% × 0.75

1.4% × 0.75 + 98.6% × 0.1

▸ P(B ∣A) is 0.096242, about 10 %.

▸ B is our prior distribution: our beliefs before we learn any new
information.

▸ After we observe new information from A, we update our beliefs,
giving us a posterior distribution.

▸ ”Prior” means ”before”, ”posterior” means ”after”.
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Example

▸ Suppose we are the person in this situation, and we got a positive
result. What can we do to be sure that this is not a false positve?

▸ We can take a second test. Our beliefs after the second test will
depend on the correlation between the two tests.

▸ Suppose the two tests are independent: the outcome of the first
test is completely unrelated to the second test.v

▸ If the second test gives a positive result for cancer, we can use
Bayes’ Theorem again, using 0.0962 as our prior distribution.

P(B ∣A) =
9.62% × 0.75

9.62% × 0.75 + (1.0 − 9.62%) × 0.1

▸ P(B ∣A) is 0.4439, about 44 %.
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Beliefs as a Probability Distribution

2

1

2

B

B

B SS

S

(2,1) (1,2)(0,0)(0,0)

▸ Let’s return to the description of BoS as an extensive game with
imperfect information.

▸ Consider Player 2’s information set. He knows that there are two
possibilities for Player 1’s action: B or S . Some possible beliefs of
Player 2 are:

▸ B and S are equally likely.
▸ B is more likely to have occurred than S .
▸ It is impossible for B to have occurred. S has occurred with

certainty.
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Beliefs as a Probability Distribution

▸ We can formulate these statements in a precise way with a
probability distribution.

▸ From the player’s point of view, he is adopting a subjectivist view of
probability.

▸ Player 2 places a probability on B and S that must add up to 1; the
relative sizes of the probabilities reflects Player 2’s opinion on how
likely it is that B vs. S has occurred.

▸ The first number is the probability on B. For example:

▸ If Player 2’s opinion is that B and S are equally likely, beliefs
are modeled by a probability distribution ( 1

2
, 1
2
).

▸ If Player 2’s opinion is that B is more likely to have occurred,
the probability distribution is of the form (p,1 − p) where
p > 1

2
.

▸ If Player 2’s opinion is that S is impossible, the probability
distribution is (1,0).
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▸ What is the probability that history L occurs? p

▸ What is the probability that history R occurs? 1 − p

▸ The probability that information set {L} is reached is p.

▸ The probability that information set {R} is reached is 1 − p.
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▸ What is the probability that history M occurs? p2

▸ What is the probability that history R occurs? 1 − p1 − p2

▸ The probability that information set {L} is reached is p1.

▸ The probability that information set {M,R} is reached is
P(M) + P(R) = 1 − p1.

▸ Suppose we know we have reached information set {M,R}. What is
the probability that we are in history M?

▸ This is the conditional probability P(M ∣{M,R}). From Bayes’ Rule,
this is:

P(M ∣{M,R}) =
P(M ∩ {M,R})

P({M,R})
=

p2
1 − p1

▸ Similarly, the conditional probability P(R ∣{M,R}) is 1−p1−p2
1−p1

.
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▸ At information set {M,R}, the player will have beliefs over the
possible histories M,R.

▸ This can be any probability distribution over M,R.

▸ We say that beliefs are consistent with the given probability
distribution of Nature if they match the true probability

(

p2
1 − p1

,
1 − p1 − p2

1 − p1
)
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Next Class

▸ Please read the appendix (Chapter 17) in the textbook dealing with
conditional probability and Bayes’ rule.

▸ Please read Chapter 10.

▸ If you don’t have the official copy of the book, please email me.
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