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Homework #1

▸ Homework #1 is due next week.

▸ The numbers of the exercises may be different in the
electronic versions of the textbook! Please check the name
of the exercise is the same.
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Review of Last Week

▸ Best Response Function: Suppose the action list for players other
than i is a−i . The best response function of player i , denoted
Bi(a−i), is the set of actions of player i that give the highest payoff
(out of all possible actions).

▸ Nash equilibrium is equivalent to the condition that each player is
playing a best response to the other players’ actions.

▸ We can use this to find the Nash equilibria of games, by finding the
intersection of best response functions.

▸ This is always possible for games with a finite number of actions
(i.e. bi-matrix games).

▸ It may be possible in games with an infinite action space (e.g. if the
payoff function is concave).
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Review of Last Week

▸ Strict Dominance: Action A strictly dominates action B if A gives a
strictly higher payoff, no matter what actions the other players play.

▸ An action is strictly dominated if there is some other action that
strictly dominates it.

▸ A strictly dominated action will never be played in a Nash
equilibrium (in fact, it is never rational to play such an action).

▸ We can eliminate strictly dominated actions when searching for NE.
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Review of Last Week

▸ A symmetric 2-player, 2-action game is one where the roles of
Player 1 and Player 2 are interchangeable.

▸ We use this to model a situation where players are drawn from a
single population.
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Weak Domination

▸ A player’s action is weakly dominated if the player has another
action that is never worse, and better in at least one case,
depending on the other players’ actions.

▸ Definition: Player i ’s action bi weakly dominates action b′i if

ui(bi , a−i) ≥ ui(b
′

i , a−i) for every a−i

▸ with at least one strict inequality for some list a−i of the other
players’ actions:

ui(bi , a−i) > ui(b
′

i , a−i) for at least one a−i
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Weak Domination: Example

L R
T 1 0
M 2 0
B 2 1

▸ Only player 1’s payoffs are shown in this matrix.

▸ For player 1, M weakly dominates T , and B weakly dominates M.

▸ B strictly dominates T .
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Weakly Dominated Actions

▸ Can a weakly dominated action be played in a Nash equilibrium?

B C
B 1,1 0,0
C 0,0 0,0

▸ In this example, B weakly (but not strictly) dominates C .

▸ Both (B,B) and (C ,C) are Nash equilibria, but only (B,B) is a
strict Nash equilibrium.

▸ A weakly dominated action may be played in a Nash equilibrium;
this might be considered ”unreasonable” (recall the election
example).

▸ Recall: in a strict Nash equilibrium, each player’s equilbrium action
gives a strictly higher payoff, given the other players’ actions.

▸ Therefore, in a strict NE, no equilibrium action is weakly dominated.
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Illustration: Collective Decision-Making (2.9.4)

▸ Suppose a group of people are deciding on a policy that affects
everyone. Assume that the policy can be represented by a single
number.

▸ For example: tax level, location of a park, ”left” vs. ”right”...

▸ Each person will announce a policy, and the median of the
announcements will be chosen.

▸ Players: n citizens, n is odd. Each citizen i has a favorite
policy, a number x∗i .

▸ Actions: Each citizen chooses to announce a real number xi .
▸ Preferences: For citizen i , his payoff is the negative of the

distance from his favorite policy x∗i , to the median of
everyone’s announced policies.
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Properties of the Median

▸ The median of N numbers is a number that half of the numbers are
below, and half are above.

▸ If N is odd, then the median is the middle number. For example:
the median of 3,3,5,9,11 is 5.

▸ If N is even, then the median is the average of the middle two
numbers. For example: the median of 3,3,5,6,9,11 is 5.5.

▸ If N is odd, if the numbers above the median increase, the value of
the median is not affected (likewise, if the numbers below the
median decrease).

▸ This is in contrast to the average of N numbers, which is affected
by a change to any of the numbers.

▸ For example, when comparing the wealth of ”ordinary” citizens
across countries, the median of wealth (instead of average wealth) is
frequently used, since it is less affected by a few very rich people.
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Let’s Play Collective Decision-Making

▸ I will choose 5 people, and we will assign each person a preferred
policy from 1 to 5.

▸ Each person will choose a number xi .

▸ The chosen policy will be the median of x1, ..., x5.

▸ Player i ’s payoff will be the negative of the distance from xi to the
median.
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Illustration: Collective Decision-Making (2.9.4)

▸ Claim: for each player i , the action of announcing x∗i , (i.e. being
truthful) weakly dominates all other actions.

▸ To prove this, need to show that switching your announced xi from
x∗i to anything else will never increase your payoff (but may leave it
unchanged).

▸ In the following cases, assume that player i has chosen to announce
xi = x∗i .

▸ Case 1: The median is equal to player i ’s preferred position, x∗i .
Clearly, player i cannot increase his payoff further.

▸ Case 2: The median is to the left (or below) x∗i .

▸ Player i would like to move the median to the right, but
cannot do so (by the properties of the median).

▸ Player i can move the median to the left, if he lowers his
announced xi far enough, but this lowers his payoff.

▸ Case 3: The median is to the right (or above) x∗i . Same as Case 2.
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Models of Oligopoly

▸ In microeconomics, you studied industries with many small firms, or
one firm.

▸ Perfect competition: firms have no market power, are price takers.
Result: P =MC

▸ Monopoly: one firm that faces market demand. Result: P >MC ,
consumer surplus is reduced

▸ With game theory, we can study an industry with more than one
firm.

▸ Firms compete with other on price, output, quality, etc.

▸ Each firm’s action affects the profitability of other firms.

Prof. Ronaldo CARPIO CUR 412: Game Theory and its Applications, Lecture 3



Cournot’s Model of Oligopoly

▸ Cournot (1836) proposed that firms compete on output.

▸ There are n firms, producing a single good.

▸ The cost to firm i of producing qi units of output is Ci(qi), where
Ci is non-negative and increasing.

▸ All output on the market is sold at a single price, which is
determined by the demand curve for the good.

▸ Let Q be the total output of all firms: Q = q1 + q2 + ...qn

▸ Market demand is specified by an inverse demand function P(Q),
which gives the market price as a function of total output.
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Cournot’s Model of Oligopoly

▸ We assume each firm has market power, and all firms are aware of
their own (and all other firms’) market power.

▸ Firm i ’s revenue is qi ⋅ P(q1 + ... + qn)

▸ Profit is πi(q1, ...qn) = qi ⋅ P(q1 + ... + qn) − Ci(qi)

▸ Cournot’s Oligopoly Game:

▸ Players: the n firms
▸ Actions: each firm chooses its output qi , a non-negative

number
▸ Preferences: Payoff of an outcome (q1, ...qn) is given by profit

to the firm
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Cournot Oligopoly with Two Firms

▸ Assume n = 2.

▸ Constant unit cost: Ci(qi) = c ⋅ qi , where c < α

▸ Inverse demand function:

P(Q) =

⎧⎪⎪
⎨
⎪⎪⎩

α −Q if Q ≤ α

0 if Q > α
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Payoff Function

▸ Firm 1’s profit is: π1(q1,q2) = q1 ⋅ (P(q1 + q2) − c)

=

⎧⎪⎪
⎨
⎪⎪⎩

q1 ⋅ (α − c − q2 − q1) if q1 ≤ α − q2

−c ⋅ q1 if q1 > α − q2
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Best Response Function

▸ The maximum of the quadratic is at qi =
1
2
(α − c − q2)

▸ If the quadratic region is above 0 (positive profit), this is the best
response, from q2 = 0 up to q2 = α − c

▸ If it’s below 0, then the firm is making a loss at any output level;
best response is to produce nothing, qi = 0

▸ Best response function:

b1(q2) =

⎧⎪⎪
⎨
⎪⎪⎩

1
2
(α − c − q2) if q2 ≤ α − c

0 if q2 > α − c

▸ Firm 2’s best response function is symmetric, same as Firm 1’s with
q1,q2 reversed
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Nash Equilibrium

▸ Condition for Nash equilibrium:

q∗1 = b1(q
∗

2 ) and q∗2 = b2(q
∗

1 )

→ q1 =
1

2
(α − c − q2),q2 =

1

2
(α − c − q1)

▸ Solution: q∗1 = q∗2 = (α − c)/3
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Properties of Cournot Equilibrium

▸ Each firm’s profit at equilibrium is (α − c)2/9.

▸ Total output is 2
3
(α − c)

▸ Under perfect competition, P = c → Q = α − c

▸ Under monopoly, Q = 1
2
(α − c)
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Bertrand’s Model of Oligopoly

▸ In Cournot’s model, firms all charged the same price, and competed
on output.

▸ Bertrand (1883) criticized Cournot’s formulation, arguing that firms
compete on price instead.

▸ Assumptions:

▸ n firms producing a single good
▸ Cost to firm i of producing qi units of output: Ci(qi), where
Ci is non-negative and increasing

▸ Consumers only buy from firms with the lowest price. If many
firms offer the same lowest price, they split demand equally.

▸ Demand function D(p)
▸ Firms produce what is demanded.

Prof. Ronaldo CARPIO CUR 412: Game Theory and its Applications, Lecture 3



Bertrand’s Oligopoly Game

▸ Assume n = 2.

▸ Firm 1’s profit:

π1(p1,p2) =

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

p1D(p1) − C1(D(p1)) if p1 < p2
1
2
p1D(p1) − C1(

1
2
D(p1)) if p1 = p2

0 if p1 > p2

▸ Players: 2 firms

▸ Actions: Each firm chooses its price, a non-negative number

▸ Preferences: Payoff of an outcome (p1, ...pn) is given by profit to
the firm
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Bertrand’s Oligopoly Game

▸ Assume constant unit cost: Ci(qi) = c ⋅ qi

▸ Demand function: D(p) = α − p for p ≤ α, D(p) = 0 for p > α

▸ Assume c < α.

▸ Firm i has constant unit cost c , so will make unit profit pi − c .

▸ Firm i ’s profit:

π1(p1,p2) =

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

(pi − c)(α − pi) if pi < pj
1
2
(pi − c)(α − pi) if pi = pj

0 if pi > pj
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Payoff Function

π1(p1,p2) =

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

(pi − c)(α − pi) if pi < pj
1
2
(pi − c)(α − pi) if pi = pj

0 if pi > pj
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Best Response Function

▸ Let pm be the price that maximizes the quadratic portion of the
payoff curve.

▸ Case 1: p2 < c .

▸ Firm 2 is losing money.
▸ Any price above p2 is a best response.
▸ Firm 1 will attract no customers and make zero profit.

▸ Case 2: p2 = c .

▸ Firm 2 is setting P =MC and making zero profit.
▸ Any price ≥ c is a best response.
▸ If firm 1 chooses p1 = c , splits demand with firm 2 and makes

zero profit.
▸ If firm 1 chooses p1 > c , attracts no customers and makes zero

profit.
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Best Response Function

▸ Case 3: c < p2 < pm.

▸ Firm 2 is charging above marginal cost.
▸ Firm 1 can take all the customers while still making a profit by

charging a lower price.
▸ There is no best response; profit can always be increased (by

smaller and smaller amounts) by charging a higher price that is
still less than p2.

▸ Case 4: p2 > pm.

▸ pm is the unique best response.
▸ Firm 1 will take all the customers and maximize positive

profits.
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Best Response Function

▸ This shows Player 2’s best response function.

▸ Player 1’s best response function is identical, with p1 and p2
reversed.
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Nash Equilibrium

▸ Let’s consider the possible cases of (p1,p2) to find Nash equilibria.
Recall that at NE, no player has an incentive to deviate.

▸ So, if starting from (p1,p2), any player has a better response, it is
not a NE.

▸ Case 1: p1 = p2 = c

▸ Playing c is a best response to the other player playing c . So,
it is a NE.

▸ Case 2: pi < c for either player

▸ A firm playing pi < c is making negative profit, so a better
outcome is to play pi = c and make zero profit. Not a NE.

▸ Case 3: pi = c ,pj > c

▸ Player i can increase his profit by raising pi to anything less
than pj . Not a NE.
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Nash Equilibrium

▸ Case 4: pi > c ,pj > c

▸ Suppose pi ≥ pj . Player i can undercut player j by lowering pi
to a price just below pj , take all the customers, and make a
positive profit. Not a NE.
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Bertrand Paradox

▸ Nash equilibrium outcome is the same as perfect competition:
P =MC , firms make zero profits

▸ Intuitively, it should require many firms to drive down price to
marginal cost.

▸ However, in Bertrand’s model, only two firms are required.

▸ This is due to the assumption that customers only buy from the
lowest price.

▸ Also, if firms could collusively fix prices, they could behave like a
monopolist.
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Hotelling’s Model of Electoral Competition

▸ This is a widely used model in political science and industrial
organization, Hotelling’s ”linear city” model.

▸ Players choose a location on a line; payoffs are determined by how
much of the line is closer to them than other players.

▸ Here, location represents a position on a one-dimensional political
spectrum, but it can also represent physical space or product space.
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Location on Political Spectrum

xmin

v1

xmax

v2 v3 v4 v5

m

▸ Political position is measured by position on an interval of numbers

▸ xmin is the most ”left-wing” position, xmax is the most ”right-wing”
position

▸ Voters are located at fixed positions somewhere on the line. This
position represents their ”favorite position”.

▸ In this example, there are five voters with favorite positions at
v1...v5.

▸ The median position m is the position such that half of voters are
to the left or equal to m, and the other half are to the right or equal
to m.

▸ Voters dislike positions that are farther away from them on the line.
They are indifferent between positions to their left and right that
have the same distance.
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Attracting Voters Based on Position

▸ Candidates can choose their position.

▸ Assume that voters vote for a candidate based only on distance to
the voter’s position. They always vote for the closest candidate.

▸ If there is a tie (two candidates with the same distance), the
candidates will split the vote.

▸ Therefore, each candidate will attract all voters who are closer to
him than any other candidate.
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Attracting Voters Based on Position

▸ Suppose there are three candidates who choose positions at
x1, x2, x3.

▸ All voters to the left of x1 will vote for x1. Likewise, all voters to the
right of x3 will vote for x3.

▸ Between candidates x1 and x2, each candidate will attract voters up
to the midpoint (x1 + x2)/2.

▸ The candidate that attracts the most votes wins. Ties are possible.

▸ Candidates’ most preferred outcome is to win. A tie is less
preferable; the more the tie is split, the less preferred.

▸ Losing is the least preferable outcome.
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Candidates’ Payoff Function

▸ Payoffs can be represented by this function:

ui(x1, ...xn) =

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

n if candidate wins

k if candidate ties with n − k other candidates

0 if candidate loses

▸ Definition of Hotelling’s Game of Electoral Competition:

▸ Players: the candidates
▸ Actions: each candidate can choose a position (a number) on

the line
▸ Preferences: Each candidate’s payoff is given by the function

above.
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Let’s Play the 2-Person Game

▸ Assume voters (or consumers) are uniformly distributed along a line
that begins at 0 and ends at 100.

▸ I will choose 2 players.

▸ Each player will write down a number from 0 to 100. This is their
position on the line.

▸ Calculate the portion of the line that is closer to each player.

▸ The player with the larger portion wins (if portions are equal, there
is a tie).

Prof. Ronaldo CARPIO CUR 412: Game Theory and its Applications, Lecture 3



Two Candidates

▸ Suppose there are two candidates that choose positions x1, x2.

▸ The median position (half of voters are on the left, half on the
right) is m.

▸ Let’s examine the best response function of player 1 to x2.

▸ Case 1: x2 < m
▸ Player 1 wins if x1 > x2 and (x1 + x2)/2 < m. Every position

between xj and 2m − xj is a best response.

▸ Case 2: x2 > m
▸ By the same reasoning, every position between 2m − xj and xj

is a best response.

▸ Case 3: x2 = m
▸ Choosing m results in a tie; any other choice results in a loss.

Therefore, x1 = m is the best response.
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Best Response Function

▸ Best response function is:

B1(x2) =

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

{x1 ∶ x2 < x1 < 2m − x2} if x2 < m

{m} if x2 = m

{x1 ∶ 2m − x2 < x1 < x2} if x2 > m

▸ Unique Nash equilibrium is when both candidates choose m.
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Direct Argument for Nash Equilibrium

▸ At (m,m), any deviation results in a loss.

▸ At any other position:

▸ If one candidate loses, he can get a better payoff by switching
to m.

▸ If there is a tie, either candidate can get a better payoff by
switching to m.
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Implications of Equilibrium

▸ Conclusion: competition between candidates drives them to take
similar positions at the median favorite position of voters

▸ In physical or product space: competing firms are driven to locate
at the same position, or offer similar products

▸ This is known as ”Hotelling’s Law” or ”principle of minimum
differentiation”

▸ Requires the one-dimensional assumption on voter/consumer
preferences.

▸ If there is more than one dimension (e.g. consumers care about
both price and quality), this result may not hold
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Next Week

▸ Please read the rest of Chapter 3 and 4.1-4.6 in Chapter 4.

▸ Email me if you do not have the book.

▸ Homework #1 is posted on the course website

▸ Due next week.

▸ The numbers of the exercises may be different in the electronic
versions of the textbook! Please check the name of the exercise is
the same.
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