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Announcements

» The midterm will be next week in class. It will be
closed-book and cover Chapters 1-4 (only the sections that
we've gone over in lectures).

» Previous midterms and solutions are on the course website.

» No smartphones or programmable calculators will be allowed.
Ordinary calculators are fine.

> I'm returning HW #1.

» HW # 1: questions 1-3 are 1 point, the rest are 2 points

» HW #2 is due at the end of class today.
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Review of Last Week

» Proposition: A mixed strategy profile o is a mixed strategy
Nash equilibrium if and only if, for each player i:

» The expected payoff (given other players' strategies a_;) to
every action in a; with a positive probability, is the same,
equal to U;(a*)

» The expected payoff (given other players’ strategies ;) to
every action in a with zero probability, is at most, equal to
the expected payoff in the first condition

» We can use this condition to check whether some mixed
strategy profile « is a mixed strategy NE.

» Check that the expected payoffs to each action in «; with
positive probability, is the same.
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Review of Last Week

» Suppose G is a finite, strategic form game without
randomization, and let G’ be the same game, where
randomization is allowed and players have expected payoff
preferences.

» G’ has at least one MSNE.

» The NE of G (if they exist) are also pure strategy MSNE's of
G'.

» The pure strategy MSNE's of G" are NE of G.

» G’ may have other non-pure mixed strategy NE.
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Symmetric Mixed Strategy Equilibrium

» Before, we saw that a pure strategy Nash equilibrium could be
interpreted as a steady state of a social situation, in which players
are randomly drawn from populations (one population for each type
of player).

» A symmetric game is a social situation where each player is facing
the same situation.

» Examples:

» Two pedestrians walking towards each other

» Two cars approaching each other at an intersection

» (from last week) People who have observed a crime

» Commuters deciding whether to drive a car, or take the
subway (congestion games)

> In all of these situations, the role of each player is identical to every
other player.
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Symmetric Mixed Strategy Equilibrium

» The problem facing a player in a symmetric game, is caused by
other people exactly like yourself

» We can interpret an equilibrium of this game as a steady state of a
social situation, where all players are randomly drawn from the same
population.

> A pure strategy symmetric equilibrium is a steady state where all
players choose the same action. (e.g. drive on the right)

> A mixed strategy symmetric equilibrium is a steady state where
fractions of the players choose different actions (corresponding to
the probability of each action)
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Symmetric Mixed Strategy Equilibrium

L R
L | ww|xy
R| yx | zz

» In a 2-player, 2-action symmetric game, the payoffs must have this
structure.

» Both players have the same actions, and the payoffs must be
identical if Player 1 and Player 2's roles are exchanged.

» A symmetric pure-strategy Nash equilibrium is a NE where both
players choose the same action.

» We can extend this concept to a symmetric MSNE: a mixed-strategy
NE where all players choose the same mixed strategy.
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Approaching Pedestrians

L R
L|11]00
R|100|11

» This symmetric game has two symmetric pure-strategy NE.

» There is also a symmetric MSNE, where each player chooses L with
probability 3.

» Note that the MSNE makes players worse off than the pure strategy
NE, since there is a collision half of the time.

» When players prefer to choose the same action, we say that their
interests coincide.
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X Y
X100 |11
Y|11|00

» This symmetric game has no symmetric pure-strategy NE.

» It also has a symmetric MSNE, where each player chooses X with
probability .

> In this game, players’ interests do not coincide, since they prefer to
choose different actions.
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Existence of Symmetric MSNE

» Similar to the case for MSNE, it can be proven that a symmetric
MSNE must exist in a finite symmetric game.

» Proposition 130.1: Every symmetric strategic game with vNM
preferences in which each player’s set of actions is finite, has a
symmetric mixed strategy NE.
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Exercise 118

» There are two generals, Attacker and Defender.
» Attacker has 2 armies, Defender has 3 armies.
» There are two locations that must be defended.

» Each general must choose how many armies to allocate to each
location.

» In each location, if Defender has at least as many armies as
Attacker, then Defender wins the battle at that location.

» Defender wins the game if he wins at both locations.
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Exercise 118.3: Defending Territory

Attacker
(0,2) (1,1) (20)
(0, 3) 1,0 0,1 0,1
(1, 2) 1,0 1,0 0,1
Defender (2,1) [0.1 10 10
(3,0) 0,1 0,1 1,0

» No pure Nash equilibria.

> Note that for Defender, (1,2) weakly dominates (0,3) and (2,1)

weakly dominates (3,0).
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Exercise 118.3: Defending Territory

> First, we show that Attacker will not play (1,1) in any MSNE.
» Let g1, qo, g3 denote Attacker’s probability of playing (0,2), (1,1),
(2,0) respectively, with g1 + g2 + g3 = 1.
» Attacker must play (0,2) and (2,0) with positive probability;
otherwise, Defender has an action that guarantees victory.
» Suppose Attacker plays (1,1) with positive probability (g > 0).
» Defender's expected payoff to his pure strategies are:
» (0,3):q1
» (1,2):q1l+q2
» (2,1):9q2+ g3
+ (3,0): 3
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Exercise 118.3: Defending Territory

» Defender's expected payoff to his pure strategies are:

» (0,3):q1
» (1,2):ql+q2
» (2,1):¢q2+q3
> (3,0): 93
» Defender's best response is to place zero probability on (0,3) and

(3,0), since (1,2) and (2,1) give a strictly higher expected payoff.

» But if Defender does not play (0,3) and (3,0), then (1,1) becomes
strictly dominated for Attacker, and therefore cannot be played in
equilibrium.

» This is a contradiction, so the assumption must be false: Attacker
does not play (1,1) with positive probability.
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Exercise 118.3: Defending Territory

> If we assume Attacker will not play (1,1), then Defender's actions:

» (0,3) and (1,2) have the same payoffs
» (2,1) and (3,0) have the same payoffs

» Attacker will choose g1, g3 to make Defender indifferent between
his actions that are played with positive probability.

» Defender's expected payoff to playing (0,3) or (1,2): ¢
» Defender's expected payoff to playing (2,1) or (0,3): g3
» Equalizing them gives g1 = g3 = 0.5.
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Exercise 118.3: Defending Territory

» Now, consider Defender's strategy. Assume the probability placed
on (0,3), (1,2), (2,1), (0,3) are p1, p2, p3, ps respectively, where
p1+p2+ps+ps=L

» We can eliminate Attacker's action (1,1).

» For Defender, (0,3) is equivalent in payoff to (1,2), so for a given
level of p; + po, the values of p; and p, are irrelevant.

» Likewise, (2,1) is equivalent in payoff to (0,3), so for a given level
of p3 + p4, the values of p3 and p, are irrelevant.

» The conditions for MSNE must be satisfied:
EAttacker(17 ]-) < EAttacker(Oa 2) = EAttacker(27 0)
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Exercise 118.3: Defending Territory

» The conditions for MSNE must be satisfied:
EAttacker(L ]-) < EAttacker(Oa 2) = EAttacker(2a 0)

g EAttacker(Oa 2) =p3+ pa
g EAttacker(L ]-) =p1+ pa
g EAttacker(27 O) =p1+ p2

EAttacker(Oa 2) = EAttacker(2,O) = p1tpP2=p3+tps
» Since py +po+ p3+ ps =1, then py + po = p3 + ps = 0.5.
EAttacker(]-; 1) < EAttacker(07 2) = p1+ps<p3+ps=p1<p3

Enttacker(1,1) < Eattacker(2,0) = p1+pa<pi+p2=ps<p2
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Exercise 118.3: Defending Territory

» A mixed strategy profile is a MSNE if:
» Attacker plays (0,2), (2,0) with probability 0.5 on each
» Defender plays p1, p2, p3, ps such that:

p1+p2=p3+ps=05

p1 < Pp3; pa<p2
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What Does It Mean To Play A Mixed Strategy?

» The concept of mixed strategy Nash equilibrium makes some
assumptions that may or may not hold in the real world.

» First, players are assumed to know the mixed strategies of other
players. How do they know this?

» If we assume a situation that is repeatedly played many times, then
we can observe the frequency of each action.

» However, in a one-shot situation, there are no past examples to
learn from.

» We can interpret the mixed strategy of other players as a belief
about their behavior, rather than an empirical frequency.

» We'll examine this idea later in Chapter 9.
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What Does It Mean To Play A Mixed Strategy?

» Second, do people really randomize their actions in important
situations?

» Again, this is plausible in repeated situations, but perhaps not in
one-shot situations.

> It can be argued that in games with conflict, | want my actions to
be unpredictable by the other player.

» However, in games with cooperation (e.g. BoS), it is beneficial to
me if the other player can predict my actions.

> Mixed strategies can be interpreted as applying to populations,
instead of individuals.
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Extensive Form Games (Chapter 5)

» So far, we've been using strategic form (or normal form)
games. All players are assumed to move simultaneously.

» This cannot capture a sequential situation, where one player
moves, then another...

» Or, if one player can get information on the moves of the
other players, before making his own move.

» We will introduce a way of specifying a game that allows this.
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Example: An Entry Game

» Suppose we have a situation where there is an incumbent and
a challenger.

» For example, an industry might have an established dominant
firm.

» A challenger firm is deciding whether it wants to enter this
industry and compete with the incumbent.

» If the challenger enters, the incumbent chooses whether to
engage in intense (and possibly costly) competition, or to
accept the challenger's entry.
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» There are two players: the incumbent and the challenger.

v

The challenger moves first, has two actions: In and Out.

v

If the challenger chooses In, the incumbent chooses Fight or
Acquiesce.

» Challenger’s preference over outcomes:
(In, Acquiesce) > (Out) > (In, Fight)

» Incumbent's preference over outcomes:
(Out) > (In, Acquiesce) > (In, Fight)

» We can represent these preferences with the payoff functions
(challenger is u1):

u1(In, Acquiesce) = 2, u1(Out) = 1, u1(In, Fight) =0

up(Out) =2, ux(In, Acquiesce) = 1, ux(In, Fight) =0
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Game Tree

Challenger

Incumbent
Acquiesce 1,2

2,1 0,0

» We can represent this game with a tree diagram.

» The root node of the tree is the first move in the game (here,
by the challenger).

» Each action at a node corresponds to a branch in the tree.
» Outcomes are leaf nodes (i.e. there are no more branches).

» The first number at each outcome is the payoff to the first
player (the challenger).
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Formal Specification of an Extensive Game

» Formally, we need to specify all possible sequences of actions,
and all possible outcomes.
» A history is the sequence of actions played from the
beginning, up to some point in the game.
» In the tree, a history is a path from the root to some node in
the tree.
» In the entry game, all possible histories are: @ (i.e. at the
beginning, no actions played yet),
(In), (Out), (In, Acquiesce), (In, Fight).
» A terminal history is a sequence of actions that specifies an
outcome, which is what players have preferences over.
» In the tree, a terminal history is a path from the root to a leaf
node (a node with no branches).
» In the entry game, the terminal histories are:
(Out), (In, Acquiesce), (In, Fight).
» A player function specifies whose turn it is to move, at every
non-terminal history (every non-leaf node in the tree).
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Formal Specification of an Extensive Game

» An extensive game is specified by four components:
» A set of players
» A set of terminal histories, with the property that no terminal
history can be a subsequence of some other terminal history

» A player function that assigns a player to every non-terminal
history

» For each player, preferences over the set of terminal histories

» The sequence of moves and the set of actions at each node
are implicitly determined by these components.

» In practice, we will use trees to specify extensive games.
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Solutions to Entry Game

Challenger

Incumbent

Acquiesce 1,2

2,1 0,0

» How can we find the solution to this game?

» First approach: Each player will imagine what will happen in future
nodes, and use that to determine his choice in current nodes.

» Suppose we're at the node just after the challenger plays In.

» At this point, the payoff-maximizing choice for the incumbent is
Acquiesce, which gives a payoff pair (2,1).

» So, at the beginning, the challenger might assume playing In gives a
payoff pair of (2,1), which gives a higher payoff than Out.

» This approach is called backwards induction: imagining what will
happen at the end, and using that to determine what to do in
earlier situations.
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Backwards Induction

» At each move, for each action, a player deduces the actions that all
players will rationally take in the future.

» This gives the outcome that will occur (assuming everyone behaves
rationally), and therefore gives the payoff to each current action.

» However, in some cases, backwards induction doesn’t give a clear
prediction about what will happen.

Challenger

Incumbent

Acquiesce 1,2

2,1 0,1

» In this version of the Entry Game, both Acquiesce, Fight give the
same payoff to the incumbent. Unclear what to believe at the
beginning of the game.

» Also, games with infinitely long histories (e.g. an infinitely repeating
game).
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Strategies in Extensive Form Games

» Another approach is to formulate this as a strategic game,
then use the Nash equilibrium solution concept.

» We need to expand the action sets of the players to take into
account the different actions at each node.

» For each player i, we will specify the action chosen at all of i's
nodes, i.e. every history after which it's i’s turn to move

» Definition: A strategy of player i in an extensive game with
perfect information is a function that assigns to each history h
after which it is i's turn to move, an action in A(h) (the
actions available after h).
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> In this game, Player 1 only moves at the start (i.e. after the empty
history @). The actions available are C, D, so Player 1 has two
strategies: @ - C,@ - D.

» Player 2 moves after the history C and also after D. After C,
available actions are E, F. After D, available actions are G, H.

» Player 2 has four strategies:

Action assigned ~ Action assigned

to history C to history D
Strategy 1 E G
Strategy 2 E H
Strategy 3 F G
Strategy 4 F H

» In this case, it's simple enough to write them together. We can
refer to these strategies as EG, EH, FG, FH. The first action
corresponds to the first history C.
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Strategies in Extensive Form Games

» We can think of a strategy as an action plan or contingency
plan: If Player 1 chooses action X, do Y.

» However, a strategy must specify an action for all histories,
even if they do not occur due to previous choices in the
strategy.

» In this example, a strategy for Player 1 must specify an action
for the history (C, E), even if it specifies D at the beginning.

» Think of this as allowing for the possibility of mistakes in
execution.
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Strategy Profiles & Outcomes

» As before, a strategy profile is a list of the strategies of all
players.

» Given a strategy profile s, the terminal history that results by
executing the actions specified by s is denoted O(s), the
outcome of s.

» For example, in this game, the outcome of the strategy pair
(DG, E) is the terminal history D.

» The outcome of (CH, E) is the terminal history (C, E, H).
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Nash Equilibrium

» Definition The strategy profile s* in an extensive game with
perfect information is a Nash equilibrium if, for every player
i and strategy r; of player i, the outcome O(s*) is at least as
good as the outcome O(r;,s*;) generated by any other
strategy profile (r;,s*;) in which player i chooses r;:

ui(O(s*)) > u;(O(r;,s*;)) for every strategy r; of player i

» We can construct the strategic form of an extensive game by
listing all strategies of all players and finding the outcome.
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Strategic Form of Entry Game

Challenger

Incumbent
Acquiesce 1,2

2,1 0,0

» The strategic form of the Entry Game is:

Incumbent
Acquiesce Fight
Challenger [n 2,1 0,0
Out 1,2 1,2

> There are two Nash equilibria: (/n, Acquiesce) and (Out, Fight).

» The first NE is the same as the one found with backwards induction.

> In the second NE, the incumbent chooses Fight. However, if In is
taken as given, this is not rational. This is called an incredible
threat.

» If the incumbent could commit to Fight at the beginning of the
game, it would be credible.
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» The concept of Nash equilibrium ignores the sequential
structure of an extensive game.

» It treats strategies as choices made once and for all at the
beginning of the game.

» However, the equilibria of this method may contain incredible
threats.

» We'll define a notion of equilibrium that excludes incredible
situations.

» Suppose I is an extensive form game with perfect information.

» The subgame following a non-terminal history h, ['(h), is the
game beginning at the point just after h.

» A proper subgame is a subgame that is not I itself.
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Subgames

2,1 3,0 0,2 1,3

» This game has two proper subgames:

2 2

2,1 3,0 0,2 1,3
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Subgame Perfect Equilibria

» A subgame perfect equilibrium is a strategy profile s* in which
each subgame's strategy profile is also a Nash equilibrium.

» Each player's strategy must be optimal for all subgames that
have him moving at the beginning, not just the entire game.

Challenger

Incumbent

Acquiesce 1,2

2,1 0,0

» (Out, Fight) is a NE, but is not a subgame perfect equilibrium
because in the subgame following In, the strategy Fight is not
optimal for the incumbent.
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Subgame Perfect Equilibria

» Every subgame perfect equilibrium is also a Nash equilibrium,
but not vice versa.

» A subgame perfect equilibrium induces a Nash equilibrium in
every subgame.

» In games with finite histories, subgame perfect equilibria are
consistent with backwards induction.
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Next Week: Midterm

» The midterm will be next week in class. It will be
closed-book and cover Chapters 1-4 (only the sections that
we've gone over in lectures).

» Previous midterms and solutions are on the course website.

» No cellphones or programmable calculators will be allowed.
Ordinary calculators are fine.
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