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Announcements

▸ The midterm will be next week in class. It will be
closed-book and cover Chapters 1-4 (only the sections that
we’ve gone over in lectures).

▸ Previous midterms and solutions are on the course website.

▸ No smartphones or programmable calculators will be allowed.
Ordinary calculators are fine.

▸ I’m returning HW #1.
▸ HW # 1: questions 1-3 are 1 point, the rest are 2 points

▸ HW #2 is due at the end of class today.
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Review of Last Week

▸ Proposition: A mixed strategy profile α∗ is a mixed strategy
Nash equilibrium if and only if, for each player i :

▸ The expected payoff (given other players’ strategies α−i ) to
every action in α∗i with a positive probability, is the same,
equal to Ui(α

∗)
▸ The expected payoff (given other players’ strategies α−i ) to

every action in α∗i with zero probability, is at most, equal to
the expected payoff in the first condition

▸ We can use this condition to check whether some mixed
strategy profile α is a mixed strategy NE.

▸ Check that the expected payoffs to each action in αi with
positive probability, is the same.
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Review of Last Week

▸ Suppose G is a finite, strategic form game without
randomization, and let G ′ be the same game, where
randomization is allowed and players have expected payoff
preferences.

▸ G ′ has at least one MSNE.

▸ The NE of G (if they exist) are also pure strategy MSNE’s of
G ′.

▸ The pure strategy MSNE’s of G ′ are NE of G .

▸ G ′ may have other non-pure mixed strategy NE.
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Symmetric Mixed Strategy Equilibrium

▸ Before, we saw that a pure strategy Nash equilibrium could be
interpreted as a steady state of a social situation, in which players
are randomly drawn from populations (one population for each type
of player).

▸ A symmetric game is a social situation where each player is facing
the same situation.

▸ Examples:

▸ Two pedestrians walking towards each other
▸ Two cars approaching each other at an intersection
▸ (from last week) People who have observed a crime
▸ Commuters deciding whether to drive a car, or take the

subway (congestion games)

▸ In all of these situations, the role of each player is identical to every
other player.
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Symmetric Mixed Strategy Equilibrium

▸ The problem facing a player in a symmetric game, is caused by
other people exactly like yourself

▸ We can interpret an equilibrium of this game as a steady state of a
social situation, where all players are randomly drawn from the same
population.

▸ A pure strategy symmetric equilibrium is a steady state where all
players choose the same action. (e.g. drive on the right)

▸ A mixed strategy symmetric equilibrium is a steady state where
fractions of the players choose different actions (corresponding to
the probability of each action)
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Symmetric Mixed Strategy Equilibrium

L R
L w,w x,y
R y,x z,z

▸ In a 2-player, 2-action symmetric game, the payoffs must have this
structure.

▸ Both players have the same actions, and the payoffs must be
identical if Player 1 and Player 2’s roles are exchanged.

▸ A symmetric pure-strategy Nash equilibrium is a NE where both
players choose the same action.

▸ We can extend this concept to a symmetric MSNE: a mixed-strategy
NE where all players choose the same mixed strategy.
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Approaching Pedestrians

L R
L 1,1 0,0
R 0,0 1,1

▸ This symmetric game has two symmetric pure-strategy NE.

▸ There is also a symmetric MSNE, where each player chooses L with
probability 1

2
.

▸ Note that the MSNE makes players worse off than the pure strategy
NE, since there is a collision half of the time.

▸ When players prefer to choose the same action, we say that their
interests coincide.
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X Y
X 0,0 1,1
Y 1,1 0,0

▸ This symmetric game has no symmetric pure-strategy NE.

▸ It also has a symmetric MSNE, where each player chooses X with
probability 1

2
.

▸ In this game, players’ interests do not coincide, since they prefer to
choose different actions.
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Existence of Symmetric MSNE

▸ Similar to the case for MSNE, it can be proven that a symmetric
MSNE must exist in a finite symmetric game.

▸ Proposition 130.1: Every symmetric strategic game with vNM
preferences in which each player’s set of actions is finite, has a
symmetric mixed strategy NE.
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Exercise 118.3: Defending Territory

▸ There are two generals, Attacker and Defender .

▸ Attacker has 2 armies, Defender has 3 armies.

▸ There are two locations that must be defended.

▸ Each general must choose how many armies to allocate to each
location.

▸ In each location, if Defender has at least as many armies as
Attacker , then Defender wins the battle at that location.

▸ Defender wins the game if he wins at both locations.
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Exercise 118.3: Defending Territory

Attacker
(0, 2) (1, 1) (2, 0)

Defender

(0, 3) 1,0 0,1 0,1
(1, 2) 1,0 1,0 0,1
(2, 1) 0,1 1,0 1,0
(3, 0) 0,1 0,1 1,0

▸ No pure Nash equilibria.

▸ Note that for Defender , (1,2) weakly dominates (0,3) and (2,1)
weakly dominates (3,0).
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Exercise 118.3: Defending Territory

▸ First, we show that Attacker will not play (1,1) in any MSNE.

▸ Let q1,q2,q3 denote Attacker ’s probability of playing (0,2), (1,1),
(2,0) respectively, with q1 + q2 + q3 = 1.

▸ Attacker must play (0,2) and (2,0) with positive probability;
otherwise, Defender has an action that guarantees victory.

▸ Suppose Attacker plays (1,1) with positive probability (q2 > 0).

▸ Defender ’s expected payoff to his pure strategies are:

▸ (0,3) ∶ q1
▸ (1,2) ∶ q1 + q2
▸ (2,1) ∶ q2 + q3
▸ (3,0) ∶ q3
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Exercise 118.3: Defending Territory

▸ Defender ’s expected payoff to his pure strategies are:

▸ (0,3) ∶ q1
▸ (1,2) ∶ q1 + q2
▸ (2,1) ∶ q2 + q3
▸ (3,0) ∶ q3

▸ Defender ’s best response is to place zero probability on (0,3) and
(3,0), since (1,2) and (2,1) give a strictly higher expected payoff.

▸ But if Defender does not play (0,3) and (3,0), then (1,1) becomes
strictly dominated for Attacker , and therefore cannot be played in
equilibrium.

▸ This is a contradiction, so the assumption must be false: Attacker
does not play (1,1) with positive probability.
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Exercise 118.3: Defending Territory

▸ If we assume Attacker will not play (1,1), then Defender ’s actions:

▸ (0,3) and (1,2) have the same payoffs
▸ (2,1) and (3,0) have the same payoffs

▸ Attacker will choose q1,q3 to make Defender indifferent between
his actions that are played with positive probability.

▸ Defender ’s expected payoff to playing (0,3) or (1,2): q1

▸ Defender ’s expected payoff to playing (2,1) or (0,3): q3

▸ Equalizing them gives q1 = q3 = 0.5.
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Exercise 118.3: Defending Territory

▸ Now, consider Defender ’s strategy. Assume the probability placed
on (0,3), (1,2), (2,1), (0,3) are p1,p2,p3,p4 respectively, where
p1 + p2 + p3 + p4 = 1.

▸ We can eliminate Attacker ’s action (1,1).

▸ For Defender , (0,3) is equivalent in payoff to (1,2), so for a given
level of p1 + p2, the values of p1 and p2 are irrelevant.

▸ Likewise, (2,1) is equivalent in payoff to (0,3), so for a given level
of p3 + p4, the values of p3 and p4 are irrelevant.

▸ The conditions for MSNE must be satisfied:
EAttacker(1,1) ≤ EAttacker(0,2) = EAttacker(2,0)

Prof. Ronaldo CARPIO CUR 412: Game Theory and its Applications, Lecture 7



Exercise 118.3: Defending Territory

▸ The conditions for MSNE must be satisfied:
EAttacker(1,1) ≤ EAttacker(0,2) = EAttacker(2,0)

▸ EAttacker(0,2) = p3 + p4
▸ EAttacker(1,1) = p1 + p4
▸ EAttacker(2,0) = p1 + p2

EAttacker(0,2) = EAttacker(2,0) ⇒ p1 + p2 = p3 + p4

▸ Since p1 + p2 + p3 + p4 = 1, then p1 + p2 = p3 + p4 = 0.5.

EAttacker(1,1) ≤ EAttacker(0,2) ⇒ p1 + p4 ≤ p3 + p4 ⇒ p1 ≤ p3

EAttacker(1,1) ≤ EAttacker(2,0) ⇒ p1 + p4 ≤ p1 + p2 ⇒ p4 ≤ p2
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Exercise 118.3: Defending Territory

▸ A mixed strategy profile is a MSNE if:

▸ Attacker plays (0,2), (2,0) with probability 0.5 on each

▸ Defender plays p1,p2,p3,p4 such that:

p1 + p2 = p3 + p4 = 0.5

p1 ≤ p3,p4 ≤ p2
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What Does It Mean To Play A Mixed Strategy?

▸ The concept of mixed strategy Nash equilibrium makes some
assumptions that may or may not hold in the real world.

▸ First, players are assumed to know the mixed strategies of other
players. How do they know this?

▸ If we assume a situation that is repeatedly played many times, then
we can observe the frequency of each action.

▸ However, in a one-shot situation, there are no past examples to
learn from.

▸ We can interpret the mixed strategy of other players as a belief
about their behavior, rather than an empirical frequency.

▸ We’ll examine this idea later in Chapter 9.
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What Does It Mean To Play A Mixed Strategy?

▸ Second, do people really randomize their actions in important
situations?

▸ Again, this is plausible in repeated situations, but perhaps not in
one-shot situations.

▸ It can be argued that in games with conflict, I want my actions to
be unpredictable by the other player.

▸ However, in games with cooperation (e.g. BoS), it is beneficial to
me if the other player can predict my actions.

▸ Mixed strategies can be interpreted as applying to populations,
instead of individuals.
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Extensive Form Games (Chapter 5)

▸ So far, we’ve been using strategic form (or normal form)
games. All players are assumed to move simultaneously.

▸ This cannot capture a sequential situation, where one player
moves, then another...

▸ Or, if one player can get information on the moves of the
other players, before making his own move.

▸ We will introduce a way of specifying a game that allows this.
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Example: An Entry Game

▸ Suppose we have a situation where there is an incumbent and
a challenger.

▸ For example, an industry might have an established dominant
firm.

▸ A challenger firm is deciding whether it wants to enter this
industry and compete with the incumbent.

▸ If the challenger enters, the incumbent chooses whether to
engage in intense (and possibly costly) competition, or to
accept the challenger’s entry.
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Entry Game

▸ There are two players: the incumbent and the challenger.

▸ The challenger moves first, has two actions: In and Out.

▸ If the challenger chooses In, the incumbent chooses Fight or
Acquiesce.

▸ Challenger’s preference over outcomes:
(In,Acquiesce) > (Out) > (In,Fight)

▸ Incumbent’s preference over outcomes:
(Out) > (In,Acquiesce) > (In,Fight)

▸ We can represent these preferences with the payoff functions
(challenger is u1):

u1(In,Acquiesce) = 2,u1(Out) = 1,u1(In,Fight) = 0

u2(Out) = 2,u2(In,Acquiesce) = 1,u2(In,Fight) = 0
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Game Tree

▸ We can represent this game with a tree diagram.

▸ The root node of the tree is the first move in the game (here,
by the challenger).

▸ Each action at a node corresponds to a branch in the tree.

▸ Outcomes are leaf nodes (i.e. there are no more branches).

▸ The first number at each outcome is the payoff to the first
player (the challenger).
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Formal Specification of an Extensive Game

▸ Formally, we need to specify all possible sequences of actions,
and all possible outcomes.

▸ A history is the sequence of actions played from the
beginning, up to some point in the game.

▸ In the tree, a history is a path from the root to some node in
the tree.

▸ In the entry game, all possible histories are: ∅ (i.e. at the
beginning, no actions played yet),
(In), (Out), (In,Acquiesce), (In,Fight).

▸ A terminal history is a sequence of actions that specifies an
outcome, which is what players have preferences over.

▸ In the tree, a terminal history is a path from the root to a leaf
node (a node with no branches).

▸ In the entry game, the terminal histories are:
(Out), (In,Acquiesce), (In,Fight).

▸ A player function specifies whose turn it is to move, at every
non-terminal history (every non-leaf node in the tree).
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Formal Specification of an Extensive Game

▸ An extensive game is specified by four components:
▸ A set of players
▸ A set of terminal histories, with the property that no terminal

history can be a subsequence of some other terminal history
▸ A player function that assigns a player to every non-terminal

history
▸ For each player, preferences over the set of terminal histories

▸ The sequence of moves and the set of actions at each node
are implicitly determined by these components.

▸ In practice, we will use trees to specify extensive games.
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Solutions to Entry Game

▸ How can we find the solution to this game?
▸ First approach: Each player will imagine what will happen in future

nodes, and use that to determine his choice in current nodes.
▸ Suppose we’re at the node just after the challenger plays In.
▸ At this point, the payoff-maximizing choice for the incumbent is

Acquiesce, which gives a payoff pair (2,1).
▸ So, at the beginning, the challenger might assume playing In gives a

payoff pair of (2,1), which gives a higher payoff than Out.
▸ This approach is called backwards induction: imagining what will

happen at the end, and using that to determine what to do in
earlier situations.

Prof. Ronaldo CARPIO CUR 412: Game Theory and its Applications, Lecture 7



Backwards Induction

▸ At each move, for each action, a player deduces the actions that all
players will rationally take in the future.

▸ This gives the outcome that will occur (assuming everyone behaves
rationally), and therefore gives the payoff to each current action.

▸ However, in some cases, backwards induction doesn’t give a clear
prediction about what will happen.

▸ In this version of the Entry Game, both Acquiesce,Fight give the
same payoff to the incumbent. Unclear what to believe at the
beginning of the game.

▸ Also, games with infinitely long histories (e.g. an infinitely repeating
game).
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Strategies in Extensive Form Games

▸ Another approach is to formulate this as a strategic game,
then use the Nash equilibrium solution concept.

▸ We need to expand the action sets of the players to take into
account the different actions at each node.

▸ For each player i , we will specify the action chosen at all of i ’s
nodes, i.e. every history after which it’s i ’s turn to move

▸ Definition: A strategy of player i in an extensive game with
perfect information is a function that assigns to each history h
after which it is i ’s turn to move, an action in A(h) (the
actions available after h).
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▸ In this game, Player 1 only moves at the start (i.e. after the empty
history ∅). The actions available are C ,D, so Player 1 has two
strategies: ∅ → C ,∅ → D.

▸ Player 2 moves after the history C and also after D. After C ,
available actions are E ,F . After D, available actions are G ,H.

▸ Player 2 has four strategies:

▸ In this case, it’s simple enough to write them together. We can
refer to these strategies as EG ,EH,FG ,FH. The first action
corresponds to the first history C .
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Strategies in Extensive Form Games

▸ We can think of a strategy as an action plan or contingency
plan: If Player 1 chooses action X, do Y.

▸ However, a strategy must specify an action for all histories,
even if they do not occur due to previous choices in the
strategy.

▸ In this example, a strategy for Player 1 must specify an action
for the history (C ,E), even if it specifies D at the beginning.

▸ Think of this as allowing for the possibility of mistakes in
execution.
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Strategy Profiles & Outcomes

▸ As before, a strategy profile is a list of the strategies of all
players.

▸ Given a strategy profile s, the terminal history that results by
executing the actions specified by s is denoted O(s), the
outcome of s.

▸ For example, in this game, the outcome of the strategy pair
(DG ,E) is the terminal history D.

▸ The outcome of (CH,E) is the terminal history (C ,E ,H).
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Nash Equilibrium

▸ Definition The strategy profile s∗ in an extensive game with
perfect information is a Nash equilibrium if, for every player
i and strategy ri of player i , the outcome O(s∗) is at least as
good as the outcome O(ri , s

∗

−i) generated by any other
strategy profile (ri , s

∗

−i) in which player i chooses ri :

ui(O(s
∗
)) ≥ ui(O(ri , s

∗

−i)) for every strategy ri of player i

▸ We can construct the strategic form of an extensive game by
listing all strategies of all players and finding the outcome.
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Strategic Form of Entry Game

▸ The strategic form of the Entry Game is:

▸ There are two Nash equilibria: (In,Acquiesce) and (Out,Fight).
▸ The first NE is the same as the one found with backwards induction.
▸ In the second NE, the incumbent chooses Fight. However, if In is

taken as given, this is not rational. This is called an incredible
threat.

▸ If the incumbent could commit to Fight at the beginning of the
game, it would be credible.
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Subgames

▸ The concept of Nash equilibrium ignores the sequential
structure of an extensive game.

▸ It treats strategies as choices made once and for all at the
beginning of the game.

▸ However, the equilibria of this method may contain incredible
threats.

▸ We’ll define a notion of equilibrium that excludes incredible
situations.

▸ Suppose Γ is an extensive form game with perfect information.

▸ The subgame following a non-terminal history h, Γ(h), is the
game beginning at the point just after h.

▸ A proper subgame is a subgame that is not Γ itself.
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Subgames

▸ This game has two proper subgames:
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Subgame Perfect Equilibria

▸ A subgame perfect equilibrium is a strategy profile s∗ in which
each subgame’s strategy profile is also a Nash equilibrium.

▸ Each player’s strategy must be optimal for all subgames that
have him moving at the beginning, not just the entire game.

▸ (Out,Fight) is a NE, but is not a subgame perfect equilibrium
because in the subgame following In, the strategy Fight is not
optimal for the incumbent.
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Subgame Perfect Equilibria

▸ Every subgame perfect equilibrium is also a Nash equilibrium,
but not vice versa.

▸ A subgame perfect equilibrium induces a Nash equilibrium in
every subgame.

▸ In games with finite histories, subgame perfect equilibria are
consistent with backwards induction.

Prof. Ronaldo CARPIO CUR 412: Game Theory and its Applications, Lecture 7



Next Week: Midterm

▸ The midterm will be next week in class. It will be
closed-book and cover Chapters 1-4 (only the sections that
we’ve gone over in lectures).

▸ Previous midterms and solutions are on the course website.

▸ No cellphones or programmable calculators will be allowed.
Ordinary calculators are fine.
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