# CUR 412: Game Theory and its Applications 

## Professor Ronaldo CARPIO

## University of International Business \& Economics

## Welcome to CUR 412

- This course is an introduction to Game Theory, the study of strategic situations (i.e. situations with more than one decision-maker).
- Course is taught in English
- Website: http://rncarpio.com/teaching/CUR412
- Announcements, slides, \& homeworks will be posted on website


## About Me: Ronaldo Carpio

- BS Electrical Engineering \& CS, UC Berkeley
- Master's in Public Policy, UC Berkeley
- PhD Economics, UC Davis
- Joined School of Banking \& Finance in 2012


## Textbook

- An Introduction to Game Theory (2003) by Martin Osborne, published by Oxford University Press
- If you don't have the book, please come see me or email me
- A useful secondary textbook is Games of Strategy, ( ${ }^{\text {nd }}$ or $3^{\text {rd }}$ Edition) by Avinash Dixit and Susan Skeath: less technical, more intuitive



## Grading

- Homework 15\%, Midterm Exam 35\%, Final Exam 50\%
- Homework:
- There will be 4 homework assignments, posted on the website
- Write-ups must be individual; you may discuss the concepts in small groups
- Exam dates: to be announced


## Contacting Me

- Email: rncarpio@yahoo.com
- Office: 123 Qiusuo Bldg
- Office Hours: 16:00-17:30 Monday \& Tuesday, or by appointment


## Course Outline

- Not all topics may be covered, depending on time.
- Introduction and Motivation
- Static Games
- Nash Equilibrium: Theory
- Nash Equilibrium: Applications
- Mixed Strategies \& Mixed Strategy Equilibrium
- Extensive Form Games
- Sequential Games and Backwards Induction
- Games with Imperfect Information
- Repeated Games
- Bargaining


## What is Game Theory, and Why do we Need It?

- Game Theory is the mathematical study of strategic situations, i.e. where there is more than one decision-maker, and each decisionmaker can affect the outcome.
- Previously in microeconomics, you studied single-person problems. For example:
- How much of each good to consume, in order to maximize my utility?
- How much output should a firm produce, in order to maximize profits?
- Rational behavior: choose the level that maximizes utility (or profits, or payoffs).
- However, in multi-agent situations, my choice may change your problem.
- We need a method that takes everyone's choices into account.


## Examples of Strategic Situations

- Business
- Competition between firms: price, quality, location...
- Market segmentation by firm: offer different levels of quality
- Auctions
- Political Science
- Voting Strategically: always vote for your candidate, or vote to ensure your least preferred candidate loses?
- Sports
- Tennis Serving
- Soccer Penalty Kicks
- Biology
- Hawk-Dove game
- Real Life
- Traffic Congestion: Driving is faster than the subway if only I drive, but if everyone drives the roads are congested.


## Definition of a Strategic (or Normal-Form) Game

- Terminology:
- The decision-makers are called players.
- Each player has a set of possible actions. The action profile is a particular list of actions, based on what players choose.
- Each player has preferences (i.e. a ranking) over the set of action profiles.
- A strategic game is a model of interaction in which each player chooses an action without knowing what other players choose
- We can think of this as players choosing their actions simultaneously.


## Definition of a Strategic (or Normal-Form) Game

- We need to specify:
- who the players are
- what they can do
- their preferences over the possible outcomes
- Definition: A strategic game consists of:
- a set of players
- for each player, a set of actions
- for each player, preferences (i.e. a ranking) over the action profile
- We will usually use payoff functions that represent preferences, instead of using preferences directly.


## A 2-Player Static Game: The Prisoner's Dilemma

- The definition above is very general. Let's consider a specific example.
- There are two suspects in a crime.
- Each suspect can be convicted of a minor offense, but can only be convicted of a major offense if the other suspect "finks" (i.e. gives information to the police).
- Each suspect can choose to be quiet or fink (inform).
- If both stay quiet, each gets 1 year in prison.
- If only one suspect finks, he goes free while the other suspect gets 4 years.
- If both suspects fink, they both get 3 years.


## Modeling the Prisoner's Dilemma

- Players: The two suspects.
- Actions: Each player's set of actions is $\{Q, F\}$.
- Preferences: We'll write down the action profile as:
(Suspect 1's choice, Suspect 2's choice).
- Suspect 1's preferences, from best to worst:

$$
-(F, Q)>(Q, Q)>(F, F)>(Q, F)
$$

- Suspect 2's preferences, from best to worst:
$-(Q, F)>(Q, Q)>(F, F)>(F, Q)$
- Instead of using preferences directly, we will use a payoff function that assigns a utility to each outcome:
- Suspect 1: $u_{1}(F, Q)=3, u_{1}(Q, Q)=2, u_{1}(F, F)=1, u_{1}(Q, F)=0$
- Suspect 2: $u_{2}(F, Q)=0, u_{2}(Q, Q)=2, u_{2}(F, F)=1, u_{2}(Q, F)=3$


## Modeling the Prisoner's Dilemma

- We can collect the payoff values into a payoff matrix:

Suspect 2

| Suspect 1 | Q | Q | F |
| :---: | :---: | :---: | :---: |
|  |  | 2,2 | 0,3 |
|  | F | 3,0 | 1,1 |

- The two rows are the two possible actions of Player 1.
- The two columns are the two possible actions of Player 2.
- In each cell, the first number if the payoff to Player 1, the second to Player 2.


## What will happen in this situation?

- Next week, we will see what possible outcomes we can expect from rational players in the Prisoner's Dilemma.
- For next week's lecture, please read Chapter 1 and Chapters 2.1-2.5 in Osborne.

