A strategic game is a model of a situation with many interacting decision-makers.
A *strategic game* is a model of a situation with many interacting decision-makers.

A game has three parts:

1. **Players** (the decision-makers)
2. For each player, a set of **actions**. An **action profile** is a list of everyone's chosen action.
3. For each player, **preferences** over the set of action profiles (usually represented by a **payoff function**).
A strategic game is a model of a situation with many interacting decision-makers.

A game has three parts:

1. **Players** (the decision-makers)
A *strategic game* is a model of a situation with many interacting decision-makers.

A game has three parts:

1. **Players** (the decision-makers)
2. For each player, a set of **actions**. An *action profile* is a list of everyone’s chosen action.
A *strategic game* is a model of a situation with many interacting decision-makers.

A game has three parts:

1. **Players** (the decision-makers)
2. For each player, a set of **actions**. An *action profile* is a list of everyone’s chosen action
3. For each player, **preferences** over the set of action profiles (usually represented by a *payoff function*).
The Prisoner’s Dilemma

- Players: two suspects to a crime, held by the police

- Preferences:
 - Suspect 1: \((F, Q) > (Q, Q) > (F, F) > (F, Q)\)
 - Suspect 2: \((Q, F) > (Q, Q) > (F, F) > (Q, F)\)

These preferences can be represented by payoff functions:

- Suspect 1:
 - \(u_1(F, Q) = 3\)
 - \(u_1(Q, Q) = 2\)
 - \(u_1(F, F) = 1\)
 - \(u_1(Q, F) = 0\)

- Suspect 2:
 - \(u_2(F, Q) = 0\)
 - \(u_2(Q, Q) = 2\)
 - \(u_2(F, F) = 1\)
 - \(u_2(Q, F) = 3\)
The Prisoner’s Dilemma

- Players: two suspects to a crime, held by the police
- Actions: each suspect can choose to be *Quiet*, or *Fink* (inform on the other suspect)
The Prisoner’s Dilemma

- Players: two suspects to a crime, held by the police
- Actions: each suspect can choose to be *Quiet*, or *Fink* (inform on the other suspect)
- Preferences:
 - Suspect 1: $(F, Q) > (Q, Q) > (F, F) > (Q, F)$
 - Suspect 2: $(F, Q) > (Q, Q) > (F, F) > (Q, F)$

These preferences can be represented by payoff functions:

- Suspect 1: $u_1(F, Q) = 3, u_1(Q, Q) = 2, u_1(F, F) = 1, u_1(Q, F) = 0$
- Suspect 2: $u_2(F, Q) = 0, u_2(Q, Q) = 2, u_2(F, F) = 1, u_2(Q, F) = 3$
The Prisoner’s Dilemma

- Players: two suspects to a crime, held by the police
- Actions: each suspect can choose to be Quiet, or Fink (inform on the other suspect)
- Preferences:
 - Suspect 1: \((F, Q) > (Q, Q) > (F, F) > (F, Q)\)
The Prisoner’s Dilemma

- Players: two suspects to a crime, held by the police
- Actions: each suspect can choose to be Quiet, or Fink (inform on the other suspect)
- Preferences:
 - Suspect 1: \((F, Q) > (Q, Q) > (F, F) > (F, Q)\)
 - Suspect 2: \((Q, F) > (Q, Q) > (F, F) > (Q, F)\)
The Prisoner’s Dilemma

- Players: two suspects to a crime, held by the police
- Actions: each suspect can choose to be *Quiet*, or *Fink* (inform on the other suspect)
- Preferences:
 - Suspect 1: \((F, Q) > (Q, Q) > (F, F) > (F, Q)\)
 - Suspect 2: \((Q, F) > (Q, Q) > (F, F) > (Q, F)\)
- These preferences can be represented by *payoff functions*:
The Prisoner’s Dilemma

- Players: two suspects to a crime, held by the police
- Actions: each suspect can choose to be Quiet, or Fink (inform on the other suspect)
- Preferences:
 - Suspect 1: \((F, Q) > (Q, Q) > (F, F) > (F, Q)\)
 - Suspect 2: \((Q, F) > (Q, Q) > (F, F) > (Q, F)\)
- These preferences can be represented by payoff functions:
 - Suspect 1:
 \[u_1(F, Q) = 3, \ u_1(Q, Q) = 2, \ u_1(F, F) = 1, \ u_1(Q, F) = 0 \]
The Prisoner’s Dilemma

- Players: two suspects to a crime, held by the police
- Actions: each suspect can choose to be *Quiet*, or *Fink* (inform on the other suspect)
- Preferences:
 - Suspect 1: \((F, Q) > (Q, Q) > (F, F) > (F, Q)\)
 - Suspect 2: \((Q, F) > (Q, Q) > (F, F) > (Q, F)\)
- These preferences can be represented by *payoff functions*:
 - Suspect 1:
 \[
 u_1(F, Q) = 3, \quad u_1(Q, Q) = 2, \quad u_1(F, F) = 1, \quad u_1(Q, F) = 0
 \]
 - Suspect 2:
 \[
 u_2(F, Q) = 0, \quad u_2(Q, Q) = 2, \quad u_2(F, F) = 1, \quad u_2(Q, F) = 3
 \]
We can collect the payoff values into a **payoff matrix**:
We can collect the payoff values into a *payoff matrix*:
The two rows are the two possible actions of Player 1.
The two columns are the two possible actions of Player 2.

<table>
<thead>
<tr>
<th></th>
<th>Q</th>
<th>F</th>
</tr>
</thead>
<tbody>
<tr>
<td>Q</td>
<td>2,2</td>
<td>0,3</td>
</tr>
<tr>
<td>F</td>
<td>3,0</td>
<td>1,1</td>
</tr>
</tbody>
</table>
We can collect the payoff values into a *payoff matrix*:

- The two rows are the two possible actions of Player 1.
- The two columns are the two possible actions of Player 2.
We can collect the payoff values into a *payoff matrix*:

- The two rows are the two possible actions of Player 1.
- The two columns are the two possible actions of Player 2.
- In each cell, the first number is the payoff of Player 1; the second is the payoff of Player 2.
Let’s Play the Prisoner’s Dilemma

- Everyone should have two cards: one Black and one Red card.

How to play:

Start with two players, each with a Black and Red card.

Each player chooses to play Black or Red, and puts the card facedown.

Reveal both cards at the same time (why?)

Suppose you are Player 1. If you play Red, then you get +2 and Player 2 gets +0.

If you play Black, you get +0 and the other player gets +3.

So, Red is beneficial to you, while Black benefits the other player.

<table>
<thead>
<tr>
<th></th>
<th>Black</th>
<th>Red</th>
</tr>
</thead>
<tbody>
<tr>
<td>Black</td>
<td>3,3</td>
<td>0,5</td>
</tr>
<tr>
<td>Red</td>
<td>5,0</td>
<td>2,2</td>
</tr>
</tbody>
</table>
Let’s Play the Prisoner’s Dilemma

- Everyone should have two cards: one Black and one Red card.
- How to play:
 - Start with two players, each with a Black and Red card.

<table>
<thead>
<tr>
<th></th>
<th>Black</th>
<th>Red</th>
</tr>
</thead>
<tbody>
<tr>
<td>Black</td>
<td>0,3</td>
<td>5,0</td>
</tr>
<tr>
<td>Red</td>
<td>3,5</td>
<td>2,2</td>
</tr>
</tbody>
</table>
Let’s Play the Prisoner’s Dilemma

- Everyone should have two cards: one Black and one Red card.
- How to play:
 - Start with two players, each with a Black and Red card.
 - Each player chooses to play Black or Red, and puts the card facedown.

<table>
<thead>
<tr>
<th></th>
<th>Black</th>
<th>Red</th>
</tr>
</thead>
<tbody>
<tr>
<td>Black</td>
<td>3,3</td>
<td>0,5</td>
</tr>
<tr>
<td>Red</td>
<td>5,0</td>
<td>2,2</td>
</tr>
</tbody>
</table>

Prof. Ronaldo CARPIO
Let’s Play the Prisoner’s Dilemma

- Everyone should have two cards: one Black and one Red card.
- How to play:
 - Start with two players, each with a Black and Red card.
 - Each player chooses to play Black or Red, and puts the card facedown.
 - Reveal both cards at the same time (why?)
Let’s Play the Prisoner’s Dilemma

- Everyone should have two cards: one Black and one Red card.
- How to play:
 - Start with two players, each with a Black and Red card.
 - Each player chooses to play Black or Red, and puts the card facedown.
 - Reveal both cards at the same time (why?)
- Suppose you are Player 1. If you play Red, then you get +2 and Player 2 gets +0.

\[
\begin{array}{c|c|c}
 & \text{Black} & \text{Red} \\
\hline
\text{Black} & 3,3 & 0,5 \\
\text{Red} & 5,0 & 2,2 \\
\end{array}
\]
Let’s Play the Prisoner’s Dilemma

- Everyone should have two cards: one Black and one Red card.
- How to play:
 - Start with two players, each with a Black and Red card.
 - Each player chooses to play Black or Red, and puts the card facedown.
 - Reveal both cards at the same time (why?)
- Suppose you are Player 1. If you play Red, then you get +2 and Player 2 gets +0.
- If you play Black, you get +0 and the other player gets +3.
Let’s Play the Prisoner’s Dilemma

- Everyone should have two cards: one Black and one Red card.
- How to play:
 - Start with two players, each with a Black and Red card.
 - Each player chooses to play Black or Red, and puts the card facedown.
 - Reveal both cards at the same time (why?)
- Suppose you are Player 1. If you play Red, then you get +2 and Player 2 gets +0.
- If you play Black, you get +0 and the other player gets +3.
- So, Red is beneficial to you, while Black benefits the other player.

<table>
<thead>
<tr>
<th></th>
<th>Black</th>
<th>Red</th>
</tr>
</thead>
<tbody>
<tr>
<td>Black</td>
<td>3,3</td>
<td>0,5</td>
</tr>
<tr>
<td>Red</td>
<td>5,0</td>
<td>2,2</td>
</tr>
</tbody>
</table>
This game has the same structure as Prisoner’s Dilemma.
This game has the same structure as Prisoner’s Dilemma.

- **Black** corresponds to *Quiet*. These actions are sometimes named *Cooperate*, because they increase payoffs for the *other* player.
This game has the same structure as Prisoner’s Dilemma.

- **Black** corresponds to *Quiet*. These actions are sometimes named *Cooperate*, because they increase payoffs for the other player.

- **Red** corresponds to *Fink*. These actions are sometimes named *Defect*, because they lower payoffs for the other player.
Suppose you are working with a friend on a joint project.
Suppose you are working with a friend on a joint project. Each of you can choose to *Work hard* or *Goof off* (be lazy).
Suppose you are working with a friend on a joint project. Each of you can choose to Work hard or Goof off (be lazy). If the other person Works hard, each of you prefers to Goof off.
Suppose you are working with a friend on a joint project.

Each of you can choose to *Work hard* or *Goof off* (be lazy).

If the other person *Works hard*, each of you prefers to *Goof off*.

Project would be better if both work hard, but not worth the extra effort.
Suppose you are working with a friend on a joint project. Each of you can choose to *Work hard* or *Goof off* (be lazy). If the other person *Works hard*, each of you prefers to *Goof off*. Project would be better if both work hard, but not worth the extra effort.

<table>
<thead>
<tr>
<th></th>
<th>Player 1</th>
<th></th>
<th>Player 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Goof off</td>
<td></td>
<td>Work hard</td>
<td></td>
</tr>
<tr>
<td>Work hard</td>
<td>2,2</td>
<td>0,3</td>
<td></td>
</tr>
<tr>
<td>Goof off</td>
<td>3,0</td>
<td>1,1</td>
<td></td>
</tr>
</tbody>
</table>
Duopoly

- Two firms produce the same good.
Duopoly

- Two firms produce the same good.
- Each firm can charge a *High* price or a *Low* price.

<table>
<thead>
<tr>
<th></th>
<th>High</th>
<th>Low</th>
</tr>
</thead>
<tbody>
<tr>
<td>High</td>
<td>1000</td>
<td>-200</td>
</tr>
<tr>
<td>Low</td>
<td>1200</td>
<td>600</td>
</tr>
</tbody>
</table>
Duopoly

- Two firms produce the same good.
- Each firm can charge a *High* price or a *Low* price.
- If both firms charge a high price, both get profit of 1000.

<table>
<thead>
<tr>
<th></th>
<th>High</th>
<th>Low</th>
</tr>
</thead>
<tbody>
<tr>
<td>High</td>
<td>1000</td>
<td>-200</td>
</tr>
<tr>
<td>Low</td>
<td>1200</td>
<td>600</td>
</tr>
</tbody>
</table>
Duopoly

- Two firms produce the same good.
- Each firm can charge a *High* price or a *Low* price.
- If both firms charge a high price, both get profit of 1000.
- If only one firm charges a high price, it loses customers, makes loss of 200. Other firm charges low price, gets profit of 1200.
Two firms produce the same good.
- Each firm can charge a *High* price or a *Low* price.
- If both firms charge a high price, both get profit of 1000.
- If only one firm charges a high price, it loses customers, makes loss of 200. Other firm charges low price, gets profit of 1200.
- If both firms charge low price, both get profit of 600.

<table>
<thead>
<tr>
<th></th>
<th>High</th>
<th>Low</th>
</tr>
</thead>
<tbody>
<tr>
<td>High</td>
<td>1000, 1000</td>
<td>-200, 1200</td>
</tr>
<tr>
<td>Low</td>
<td>1200, -200</td>
<td>600, 600</td>
</tr>
</tbody>
</table>
Similarities to Prisoner’s Dilemma

- Names of actions and payoffs are different, but *relative* payoffs are the same.
Similarities to Prisoner’s Dilemma

- Names of actions and payoffs are different, but relative payoffs are the same.
- Preferences (i.e., ranking) over outcomes are the same as in Prisoner’s Dilemma.
Similarities to Prisoner’s Dilemma

- Names of actions and payoffs are different, but *relative* payoffs are the same.
- Preferences (i.e. ranking) over outcomes are the same as in Prisoner’s Dilemma.
- If both players cooperate, both get an outcome with good payoffs.
Similarities to Prisoner’s Dilemma

- Names of actions and payoffs are different, but relative payoffs are the same
- Preferences (i.e. ranking) over outcomes are the same as in Prisoner’s Dilemma
- If both players cooperate, both get an outcome with good payoffs
- But if only one player chooses to defect, he gets an even better payoff (and cooperating player gets low payoff)
Applications of Prisoner’s Dilemma

- Arms Race
 - Players: Countries
 - Actions: Arm, Disarm
Applications of Prisoner’s Dilemma

- Arms Race
 - Players: Countries
 - Actions: Arm, Disarm

- Provision of a Public Good
 - Players: Citizens
 - Actions: Contribute, Free-Ride
Applications of Prisoner’s Dilemma

- **Arms Race**
 - Players: Countries
 - Actions: Arm, Disarm

- **Provision of a Public Good**
 - Players: Citizens
 - Actions: Contribute, Free-Ride

- **Managing a Common Resource (Tragedy of the Commons)**
 - Players: Animal Herders
 - Actions: Reduce Grazing, Overgraze
Bach or Stravinsky? (also known as Battle of the Sexes)

- Two people want to go to a concert by either Bach or Stravinsky.
Bach or Stravinsky? (also known as Battle of the Sexes)

- Two people want to go to a concert by either Bach or Stravinsky.
- They prefer to go to the same concert, but one person prefers Bach while the other prefers Stravinsky.
Bach or Stravinsky? (also known as Battle of the Sexes)

- Two people want to go to a concert by either Bach or Stravinsky.
- They prefer to go to the same concert, but one person prefers Bach while the other prefers Stravinsky.
- If they go to different concerts, each is equally unhappy.
Bach or Stravinsky? (also known as Battle of the Sexes)

- Two people want to go to a concert by either Bach or Stravinsky.
- They prefer to go to the same concert, but one person prefers Bach while the other prefers Stravinsky.
- If they go to different concerts, each is equally unhappy.

<table>
<thead>
<tr>
<th></th>
<th>Bach</th>
<th>Stravinsky</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bach</td>
<td>2, 1</td>
<td>0, 0</td>
</tr>
<tr>
<td>Stravinsky</td>
<td>0, 0</td>
<td>1, 2</td>
</tr>
</tbody>
</table>
Let’s Play Bach or Stravinsky

<table>
<thead>
<tr>
<th>Black (Bach)</th>
<th>Red (Stravinsky)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2, 1</td>
<td>0, 0</td>
</tr>
<tr>
<td>0, 0</td>
<td>1, 2</td>
</tr>
</tbody>
</table>
Matching Pennies

- Prisoner’s Dilemma and BoS have both conflict and cooperation. Matching Pennies is purely conflict.
Matching Pennies

- Prisoner’s Dilemma and BoS have both conflict and cooperation. Matching Pennies is purely conflict.
- Each of two people chooses either *Head* or *Tail*.

<table>
<thead>
<tr>
<th></th>
<th>Head</th>
<th>Tail</th>
</tr>
</thead>
<tbody>
<tr>
<td>Head</td>
<td>1,-1</td>
<td>-1,1</td>
</tr>
<tr>
<td>Tail</td>
<td>-1,1</td>
<td>1,-1</td>
</tr>
</tbody>
</table>
Matching Pennies

- Prisoner’s Dilemma and BoS have both conflict and cooperation. Matching Pennies is purely conflict.
- Each of two people chooses either Head or Tail.
- If the choices differ, Player 1 pays Player 2 $1.
Matching Pennies

- Prisoner’s Dilemma and BoS have both conflict and cooperation. Matching Pennies is purely conflict.
- Each of two people chooses either Head or Tail.
- If the choices differ, Player 1 pays Player 2 $1.
- If they are the same, Player 2 pays Player 1 $1.
Matching Pennies

- Prisoner’s Dilemma and BoS have both conflict and cooperation. Matching Pennies is purely conflict.
- Each of two people chooses either Head or Tail.
- If the choices differ, Player 1 pays Player 2 $1.
- If they are the same, Player 2 pays Player 1 $1.
- Each person cares only about the money he receives.

<table>
<thead>
<tr>
<th></th>
<th>Head</th>
<th>Tail</th>
</tr>
</thead>
<tbody>
<tr>
<td>Head</td>
<td>1,-1</td>
<td>-1,1</td>
</tr>
<tr>
<td>Tail</td>
<td>-1,1</td>
<td>1,-1</td>
</tr>
</tbody>
</table>
Let’s Play Matching Pennies

<table>
<thead>
<tr>
<th></th>
<th>Black (Head)</th>
<th>Red (Tail)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Black (Head)</td>
<td>1, -1</td>
<td>-1, 1</td>
</tr>
<tr>
<td>Red (Tail)</td>
<td>-1, 1</td>
<td>1, -1</td>
</tr>
</tbody>
</table>

Prof. Ronaldo CARPIO
CUR 412: Game Theory and its Applications, Lecture 2
Solution Concept

- We’ve defined the game. What outcomes are more likely to occur?
Solution Concept

- We’ve defined the game. What outcomes are more likely to occur?
- A *solution concept* (or *solution theory*) is a way of saying certain outcomes are less reasonable than others.
We’ve defined the game. What outcomes are more likely to occur?

A *solution concept* (or *solution theory*) is a way of saying certain outcomes are less reasonable than others.

A solution concept has two parts:
We’ve defined the game. What outcomes are more likely to occur?

A *solution concept* (or *solution theory*) is a way of saying certain outcomes are less reasonable than others.

A solution concept has two parts:

- An assumption about the *behavior* of the players. We will assume rational behavior, i.e. choosing the action with the highest payoff.
Solution Concept

- We’ve defined the game. What outcomes are more likely to occur?
- A *solution concept* (or *solution theory*) is a way of saying certain outcomes are less reasonable than others.
- A solution concept has two parts:
 - An assumption about the *behavior* of the players. We will assume rational behavior, i.e. choosing the action with the highest payoff
 - An assumption about the *beliefs* of the players.
Suppose you are Player 1. In order to choose the best action, you need to have some idea of what Player 2 will choose.
Beliefs

- Suppose you are Player 1. In order to choose the best action, you need to have some idea of what Player 2 will choose.
- This is called a belief about Player 2. Includes: the rules of the game, Player 2’s payoff function, but also...

Reasoning about what other players know (and what they know you know...) is called higher-order knowledge.
Beliefs

- Suppose you are Player 1. In order to choose the best action, you need to have some idea of what Player 2 will choose.
- This is called a belief about Player 2. Includes: the rules of the game, Player 2’s payoff function, but also...
- Player 2 will also have a belief about you, which includes your beliefs about him, etc...
Beliefs

- Suppose you are Player 1. In order to choose the best action, you need to have some idea of what Player 2 will choose.
- This is called a belief about Player 2. Includes: the rules of the game, Player 2’s payoff function, but also...
- Player 2 will also have a belief about you, which includes your beliefs about him, etc...
- Reasoning about what other players know (and what they know you know...) is called higher-order knowledge.
Beliefs

- Suppose you are Player 1. In order to choose the best action, you need to have some idea of what Player 2 will choose.
- This is called a belief about Player 2. Includes: the rules of the game, Player 2’s payoff function, but also...
- Player 2 will also have a belief about you, which includes your beliefs about him, etc...
- Reasoning about what other players know (and what they know you know...) is called higher-order knowledge.
- We’ll make a (very strong!) simplifying assumption: beliefs of all players are correct.
- subscript i denotes player i or an action of player i

Action profile (i.e. a list of all actions chosen by all players) a^* is composed of a^*_i and a^*_{-i}:

$$a^* = (a^*_i, a^*_{-i})$$

a^*_i is the action chosen by player i

a^*_{-i} is the set of actions chosen by everyone except player i
Terminology

- subscript i denotes player i or an action of player i
- subscript $-i$ denotes all other players except i, or their actions
Terminology

- subscript i denotes player i or an action of player i
- subscript $-i$ denotes all other players except i, or their actions
- Action profile (i.e. a list of all actions chosen by all players)
 a^* is composed of a_i^* and a_{-i}^*:
 \[
 a^* = (a_i^*, a_{-i}^*)
 \]
- subscript i denotes player i or an action of player i
- subscript $-i$ denotes all other players except i, or their actions
- Action profile (i.e. a list of all actions chosen by all players) a^* is composed of a^*_i and a^*_{-i}:
 \[a^* = (a^*_i, a^*_{-i}) \]
- a^*_i is the action chosen by player i
Terminology

- subscript i denotes player i or an action of player i
- subscript $-i$ denotes all other players except i, or their actions
- Action profile (i.e. a list of all actions chosen by all players) a^* is composed of a_i^* and a_{-i}^*:

$$a^* = (a_i^*, a_{-i}^*)$$

- a_i^* is the action chosen by player i
- a_{-i}^* is the set of actions chosen by everyone except player i
Nash Equilibrium

- This solution concept assumes that:
 - Players are rational (i.e. choose the highest payoff), given beliefs about other players
 - Beliefs of all players are correct
 - We want to find an outcome that is a steady state, that is, starting from that outcome, no player wants to deviate.

Definition: The action profile a^* in a strategic game is a Nash Equilibrium if, for every player i and every action b_i of player i, a^* is at least as preferable for player i as the action profile (b_i, a^*_{-i}):

$$u_i(a^*) \geq u_i(b_i, a^*_{-i})$$ for every action b_i of player i.
Nash Equilibrium

- This solution concept assumes that:
 - Players are rational (i.e. choose the highest payoff), given beliefs about other players

Definition: The action profile a^* in a strategic game is a Nash Equilibrium if, for every player i and every action b_i of player i, a^* is at least as preferable for player i as the action profile (b_i, a^*_{-i}):

$$u_i(a^*) \geq u_i(b_i, a^*_{-i})$$
Nash Equilibrium

- This solution concept assumes that:
 - Players are rational (i.e. choose the highest payoff), given beliefs about other players
 - Beliefs of all players are correct

Definition: The action profile \(a^\ast \) in a strategic game is a Nash Equilibrium if, for every player \(i \) and every action \(b_i \) of player \(i \), \(a^\ast \) is at least as preferable for player \(i \) as the action profile \((b_i, a^\ast - i) \):

\[
u_i(a^\ast) \geq u_i(b_i, a^\ast - i)\] for every action \(b_i \) of player \(i \).
Nash Equilibrium

- This solution concept assumes that:
 - Players are rational (i.e. choose the highest payoff), given beliefs about other players
 - Beliefs of all players are correct
- We want to find an outcome that is a steady state, that is, starting from that outcome, no player wants to deviate.
Nash Equilibrium

- This solution concept assumes that:
 - Players are rational (i.e. choose the highest payoff), given beliefs about other players
 - Beliefs of all players are correct
- We want to find an outcome that is a *steady state*, that is, starting from that outcome, no player wants to deviate.
- If an action profile a^* is a steady state, then all the players must *not* have other actions that they could play, that are *more preferable* to their current action in a^*.

Definition: The action profile a^* in a strategic game is a Nash Equilibrium if, for every player i and every action b_i of player i, a^* is at least as preferable for player i as the action profile (b_i, a^*_{-i}):

$$u_i(a^*) \geq u_i(b_i, a^*_{-i})$$ for every action b_i of player i.

Nash Equilibrium

- This solution concept assumes that:
 - Players are rational (i.e. choose the highest payoff), given beliefs about other players
 - Beliefs of all players are correct

- We want to find an outcome that is a *steady state*, that is, starting from that outcome, no player wants to deviate.

- If an action profile a^* is a steady state, then all the players must *not* have other actions that they could play, that are *more preferable* to their current action in a^*.

- **Definition**: The action profile a^* in a strategic game is a Nash Equilibrium if, for every player i and every action b_i of player i, a^* is *at least* as preferable for player i as the action profile (b_i, a^*_{-i}):

\[u_i(a^*) \geq u_i(b_i, a^*_{-i}) \]

for every action b_i of player i.
Note that this definition does not guarantee that a game has a Nash equilibrium.
Nash Equilibrium

- Note that this definition does not guarantee that a game has a Nash equilibrium.
- Some games may have one, more than one, or zero Nash equilibria.
Prisoner’s Dilemma

\[
\begin{array}{c|cc}
 & Q & F \\
\hline
Q & 2,2 & 0,3 \\
F & 3,0 & 1,1 \\
\end{array}
\]

- \((F, F)\) is the unique Nash equilibrium. No other action profile satisfies the conditions:

- Joint project: both will Goof off
- Duopoly: both will charge a Low price (this is bad for the firms, but good for consumers)
Prisoner’s Dilemma

\[
\begin{array}{c|cc}
 & Q & F \\
\hline
Q & 2,2 & 0,3 \\
F & 3,0 & 1,1 \\
\end{array}
\]

- \((F, F)\) is the unique Nash equilibrium. No other action profile satisfies the conditions:
- \((Q, Q)\) does not satisfy conditions, since \(u_1(Q, Q) < u_1(F, Q)\)
Prisoner’s Dilemma

\[
\begin{array}{c|cc}
 & Q & F \\
Q & 2,2 & 0,3 \\
F & 3,0 & 1,1 \\
\end{array}
\]

- \((F, F)\) is the unique Nash equilibrium. No other action profile satisfies the conditions:
- \((Q, Q)\) does not satisfy conditions, since \(u_1(Q, Q) < u_1(F, Q)\)
- \((F, Q)\) : \(u_2(F, Q) < u_2(F, F)\)
Prisoner’s Dilemma

\[
\begin{array}{ccc}
 & Q & F \\
Q & 2,2 & 0,3 \\
F & 3,0 & 1,1 \\
\end{array}
\]

- \((F, F)\) is the unique Nash equilibrium. No other action profile satisfies the conditions:
- \((Q, Q)\) does not satisfy conditions, since \(u_1(Q, Q) < u_1(F, Q)\)
- \((F, Q)\) : \(u_2(F, Q) < u_2(F, F)\)
- \((Q, F)\) : \(u_1(Q, F) < u_1(F, F)\)
(\(F, F\)) is the unique Nash equilibrium. No other action profile satisfies the conditions:

- \((Q, Q)\) does not satisfy conditions, since \(u_1(Q, Q) < u_1(F, Q)\)
- \((F, Q)\) : \(u_2(F, Q) < u_2(F, F)\)
- \((Q, F)\) : \(u_1(Q, F) < u_1(F, F)\)

Thus, the outcome predicted by the Nash equilibrium solution concept is that both players will defect.
Prisoner’s Dilemma

<table>
<thead>
<tr>
<th></th>
<th>Q</th>
<th>F</th>
</tr>
</thead>
<tbody>
<tr>
<td>Q</td>
<td>2,2</td>
<td>0,3</td>
</tr>
<tr>
<td>F</td>
<td>3,0</td>
<td>1,1</td>
</tr>
</tbody>
</table>

- \((F, F)\) is the unique Nash equilibrium. No other action profile satisfies the conditions:
- \((Q, Q)\) does not satisfy conditions, since \(u_1(Q, Q) < u_1(F, Q)\)
- \((F, Q)\) : \(u_2(F, Q) < u_2(F, F)\)
- \((Q, F)\) : \(u_1(Q, F) < u_1(F, F)\)

Thus, the outcome predicted by the Nash equilibrium solution concept is that both players will *defect*.

- Joint project: both will *Goof off*
- Duopoly: both will charge a *Low* price (this is bad for the firms, but good for consumers)
Prisoner’s Dilemma

<table>
<thead>
<tr>
<th></th>
<th>Q</th>
<th>F</th>
</tr>
</thead>
<tbody>
<tr>
<td>Q</td>
<td>2,2</td>
<td>0,3</td>
</tr>
<tr>
<td>F</td>
<td>3,0</td>
<td>1,1</td>
</tr>
</tbody>
</table>

- Note that \(F \) is the best action for each player, *regardless* of what the other player does. (This is not the case in other games).

Individual rationality can lead to a socially inefficient outcome. How might players reach the better outcome, while still behaving rationally (payoff-maximizing)?

Need to change the structure of the game, e.g.:
- External: laws, contracts, reputation
- Internal: emotions, social norms
Prisoner’s Dilemma

\[
\begin{array}{c|cc}
 & Q & F \\
\hline
Q & 2,2 & 0,3 \\
F & 3,0 & 1,1 \\
\end{array}
\]

- Note that \(F \) is the best action for each player, \textit{regardless} of what the other player does. (This is not the case in other games).
- However, \((Q, Q)\) is a better outcome for both players than \((F, F)\).
Prisoner’s Dilemma

<table>
<thead>
<tr>
<th></th>
<th>Q</th>
<th>F</th>
</tr>
</thead>
<tbody>
<tr>
<td>Q</td>
<td>2,2</td>
<td>0,3</td>
</tr>
<tr>
<td>F</td>
<td>3,0</td>
<td>1,1</td>
</tr>
</tbody>
</table>

- Note that *F* is the best action for each player, *regardless* of what the other player does. (This is not the case in other games).
- However, \((Q, Q)\) is a better outcome for both players than \((F, F)\).
- Individual rationality can lead to a socially inefficient outcome.
Prisoner’s Dilemma

Note that F is the best action for each player, *regardless* of what the other player does. (This is not the case in other games).

However, (Q, Q) is a better outcome for both players than (F, F).

Individual rationality can lead to a socially inefficient outcome.

How might players reach the better outcome, while still behaving rationally (payoff-maximizing)?
Prisoner’s Dilemma

<table>
<thead>
<tr>
<th></th>
<th>Q</th>
<th>F</th>
</tr>
</thead>
<tbody>
<tr>
<td>Q</td>
<td>2,2</td>
<td>0,3</td>
</tr>
<tr>
<td>F</td>
<td>3,0</td>
<td>1,1</td>
</tr>
</tbody>
</table>

Note that F is the best action for each player, *regardless* of what the other player does. (This is not the case in other games).

However, (Q, Q) is a better outcome for both players than (F, F).

Individual rationality can lead to a socially inefficient outcome.

How might players reach the better outcome, while still behaving rationally (payoff-maximizing)?

Need to change the structure of the game, e.g.:
Prisoner’s Dilemma

\[
\begin{array}{c|cc}
& Q & F \\
\hline
Q & 2,2 & 0,3 \\
F & 3,0 & 1,1 \\
\end{array}
\]

- Note that \(F \) is the best action for each player, \textit{regardless} of what the other player does. (This is not the case in other games).
- However, \((Q, Q)\) is a better outcome for both players than \((F, F)\).
- Individual rationality can lead to a socially inefficient outcome.
- How might players reach the better outcome, while still behaving rationally (payoff-maximizing)?
- Need to change the structure of the game, e.g.:
 - External: laws, contracts, reputation
Prisoner’s Dilemma

<table>
<thead>
<tr>
<th></th>
<th>Q</th>
<th>F</th>
</tr>
</thead>
<tbody>
<tr>
<td>Q</td>
<td>2,2</td>
<td>0,3</td>
</tr>
<tr>
<td>F</td>
<td>3,0</td>
<td>1,1</td>
</tr>
</tbody>
</table>

- Note that \(F \) is the best action for each player, \textit{regardless} of what the other player does. (This is not the case in other games).
- However, \((Q, Q)\) is a better outcome for both players than \((F, F)\).
- Individual rationality can lead to a socially inefficient outcome.
- How might players reach the better outcome, while still behaving rationally (payoff-maximizing)?
- Need to change the structure of the game, e.g.:
 - External: laws, contracts, reputation
 - Internal: emotions, social norms
Starting from \((Bach, Bach)\), no player can get a higher payoff by changing his action.
Starting from \((Bach, Bach)\), no player can get a higher payoff by changing his action.

Same for \((Stravinsky, Stravinsky)\).
Starting from \((Bach, Bach)\), no player can get a higher payoff by changing his action.

Same for \((Stravinsky, Stravinsky)\).

For \((Bach, Stravinsky)\) or \((Stravinsky, Bach)\), at least one player has an incentive to deviate.
Starting from \((Bach, Bach)\), no player can get a higher payoff by changing his action.

Same for \((Stravinsky, Stravinsky)\).

For \((Bach, Stravinsky)\) or \((Stravinsky, Bach)\), at least one player has an incentive to deviate.

Two Nash equilibria: \((Bach, Bach)\) and \((Stravinsky, Stravinsky)\).
Starting from \((Bach, Bach)\), no player can get a higher payoff by changing his action.

Same for \((Stravinsky, Stravinsky)\).

For \((Bach, Stravinsky)\) or \((Stravinsky, Bach)\), at least one player has an incentive to deviate.

Two Nash equilibria: \((Bach, Bach)\) and \((Stravinsky, Stravinsky)\).

Both outcomes are compatible with a steady state.
Matching Pennies

<table>
<thead>
<tr>
<th></th>
<th>Head</th>
<th>Tail</th>
</tr>
</thead>
<tbody>
<tr>
<td>Head</td>
<td>1,-1</td>
<td>-1,1</td>
</tr>
<tr>
<td>Tail</td>
<td>-1,1</td>
<td>1,-1</td>
</tr>
</tbody>
</table>
Matching Pennies

<table>
<thead>
<tr>
<th></th>
<th>Head</th>
<th>Tail</th>
</tr>
</thead>
<tbody>
<tr>
<td>Head</td>
<td>1,-1</td>
<td>-1,1</td>
</tr>
<tr>
<td>Tail</td>
<td>-1,1</td>
<td>1,-1</td>
</tr>
</tbody>
</table>

- There is *no* Nash equilibrium.
Matching Pennies

There is no Nash equilibrium.

For every action profile, at least one player has an incentive to deviate.
Matching Pennies

<table>
<thead>
<tr>
<th></th>
<th>Head</th>
<th>Tail</th>
</tr>
</thead>
<tbody>
<tr>
<td>Head</td>
<td>1,-1</td>
<td>-1,1</td>
</tr>
<tr>
<td>Tail</td>
<td>-1,1</td>
<td>1,-1</td>
</tr>
</tbody>
</table>

- There is *no* Nash equilibrium.
- For every action profile, at least one player has an incentive to deviate.
- There will never be a steady state in this situation.
In a Nash equilibrium, each player’s equilibrium action has to be \textit{at least as good} as every other action, not necessarily better.
In a Nash equilibrium, each player’s equilibrium action has to be \textit{at least as good} as every other action, not necessarily better.

Consider the following game:

\[
\begin{array}{ccc}
T & L & M & R \\
T & 1,1 & 1,0 & 0,1 \\
B & 1,0 & 0,1 & 1,0 \\
\end{array}
\]

\((T, L)\) is the unique Nash equilibrium.

However, when Player 2 plays \(L\), Player 1 is indifferent between \(T\) and \(B\).

This is called a \textit{non-strict} or \textit{weak} Nash equilibrium.
In a Nash equilibrium, each player’s equilibrium action has to be at least as good as every other action, not necessarily better.

Consider the following game:

<table>
<thead>
<tr>
<th></th>
<th>L</th>
<th>M</th>
<th>R</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>1,1</td>
<td>1,0</td>
<td>0,1</td>
</tr>
<tr>
<td>B</td>
<td>1,0</td>
<td>0,1</td>
<td>1,0</td>
</tr>
</tbody>
</table>

(T, L) is the unique Nash equilibrium.
In a Nash equilibrium, each player’s equilibrium action has to be \textit{at least as good} as every other action, not necessarily better.

Consider the following game:

\[
\begin{array}{ccc}
& L & M & R \\
T & 1,1 & 1,0 & 0,1 \\
B & 1,0 & 0,1 & 1,0 \\
\end{array}
\]

\((T, L)\) is the unique Nash equilibrium.

However, when Player 2 plays \(L\), Player 1 is indifferent between \(T\) and \(B\).
In a Nash equilibrium, each player’s equilibrium action has to be at least as good as every other action, not necessarily better.

Consider the following game:

<table>
<thead>
<tr>
<th></th>
<th>L</th>
<th>M</th>
<th>R</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>1,1</td>
<td>1,0</td>
<td>0,1</td>
</tr>
<tr>
<td>B</td>
<td>1,0</td>
<td>0,1</td>
<td>1,0</td>
</tr>
</tbody>
</table>

(T, L) is the unique Nash equilibrium.

However, when Player 2 plays L, Player 1 is indifferent between T and B.

This is called a non-strict or weak Nash equilibrium.
Definition: The action profile a^* in a strategic game is a strict Nash equilibrium if, for every player i and every action $b_i \neq a_i^*$ of player i, a^* is strictly preferred by player i to the action profile (b_i, a_{-i}^*):

$$u_i(a^*) > u_i(b_i, a_{-i}^*)$$

for every action $b_i \neq a_i^*$ of player i.
Suppose that the players other than Player i play the action list a_{-i}.

Let $B_i(a_{-i})$ be the set of Player i's best (i.e. payoff-maximizing) actions, given that the other players play a_{-i}.

There may be more than one.

B_i is called the best response function of Player i.

B_i is a set-valued function, that is, it may give a result with more than one element.

Every member of $B_i(a_{-i})$ is a best response of Player i to a_{-i}.
Best Response Functions

- Suppose that the players other than Player i play the action list a_{-i}.
- Let $B_i(a_{-i})$ be the set of Player i’s best (i.e. payoff-maximizing) actions, given that the other players play a_{-i}. (There may be more than one).
Best Response Functions

- Suppose that the players other than Player i play the action list a_{-i}.
- Let $B_i(a_{-i})$ be the set of Player i’s best (i.e. payoff-maximizing) actions, given that the other players play a_{-i}. (There may be more than one).
- B_i is called the **best response function** of Player i.
Suppose that the players *other* than Player i play the action list a_{-i}.

Let $B_i(a_{-i})$ be the set of Player i’s best (i.e. payoff-maximizing) actions, given that the other players play a_{-i}. (There may be more than one).

B_i is called the **best response function** of Player i.

B_i is a *set-valued* function, that is, it may give a result with more than one element.
Best Response Functions

- Suppose that the players other than Player i play the action list a_{-i}.
- Let $B_i(a_{-i})$ be the set of Player i’s best (i.e. payoff-maximizing) actions, given that the other players play a_{-i}. (There may be more than one).
- B_i is called the **best response function** of Player i.
- B_i is a **set-valued** function, that is, it may give a result with more than one element.
- Every member of $B_i(a_{-i})$ is a **best response** of Player i to a_{-i}.
Prisoner’s Dilemma

<table>
<thead>
<tr>
<th></th>
<th>Q</th>
<th>F</th>
</tr>
</thead>
<tbody>
<tr>
<td>Q</td>
<td>2,2</td>
<td>0,3</td>
</tr>
<tr>
<td>F</td>
<td>3,0</td>
<td>1,1</td>
</tr>
</tbody>
</table>

- $B_i(Q) = \{ F \}$ for $i = 1, 2$
Prisoner’s Dilemma

\[
\begin{array}{c|cc}
 & Q & F \\
\hline
Q & 2,2 & 0,3 \\
F & 3,0 & 1,1 \\
\end{array}
\]

- \(B_i(Q) = \{ F \} \) for \(i = 1, 2 \)
- \(B_i(F) = \{ F \} \) for \(i = 1, 2 \)
\[\begin{array}{cc}
\text{Bach} & \text{Stravinsky} \\
\hline
\text{Bach} & 2, 1 & 0, 0 \\
\text{Stravinsky} & 0, 0 & 1, 2 \\
\end{array} \]

- \(B_i(Bach) = \{Bach\} \) for \(i = 1, 2 \)
\[B_i(\text{Bach}) = \{\text{Bach}\} \text{ for } i = 1, 2 \]

\[B_i(\text{Stravinsky}) = \{\text{Stravinsky}\} \text{ for } i = 1, 2 \]
\[B_1(L) = \{ T, B \} \]
\[B_1(L) = \{ T, B \} \]
\[B_1(M) = \{ T \} \]
\[
\begin{array}{c|ccc}
 & L & M & R \\
\hline
T & 1,1 & 1,0 & 0,1 \\
B & 1,0 & 0,1 & 1,0 \\
\end{array}
\]

- \(B_1(L) = \{ T, B \} \)
- \(B_1(M) = \{ T \} \)
- \(B_1(R) = \{ B \} \)
\[\begin{array}{c|ccc}
 & L & M & R \\
\hline
T & 1,1 & 1,0 & 0,1 \\
B & 1,0 & 0,1 & 1,0 \\
\end{array} \]

- \(B_1(L) = \{T, B\} \)
- \(B_1(M) = \{T\} \)
- \(B_1(R) = \{B\} \)
- \(B_2(T) = \{L, R\} \)
\[\begin{array}{ccc}
T & L & M & R \\
\hline
T & 1,1 & 1,0 & 0,1 \\
B & 1,0 & 0,1 & 1,0 \\
\end{array}\]

- \(B_1(L) = \{T, B\}\)
- \(B_1(M) = \{T\}\)
- \(B_1(R) = \{B\}\)
- \(B_2(T) = \{L, R\}\)
- \(B_2(B) = \{M\}\)
Using Best Response Functions to find Nash Eq.

- **Proposition**: The action profile \(a^* \) is a Nash equilibrium if and only if every player’s action is a best response to the other players’ actions:

\[
\begin{align*}
 a^*_i & \in B_i(a^*_{-i}) \\
 a^*_i = b_i(a^*_{-i})
\end{align*}
\]
Using Best Response Functions to find Nash Eq.

- **Proposition**: The action profile a^* is a Nash equilibrium if and only if every player’s action is a best response to the other players’ actions:

\[
a_i^* \in B_i(a_{-i}^*) \quad \text{for every player } i
\]

(1)
Using Best Response Functions to find Nash Eq.

- **Proposition**: The action profile a^* is a Nash equilibrium if and only if every player’s action is a best response to the other players’ actions:

 $$ a_i^* \in B_i(a_{-i}^*) \quad \text{for every player } i $$

- If the best-response function is *single-valued*:

 $$ a_i^* = b_i(a_{-i}^*) $$

If the best-response function is 2 players, condition 1 is equivalent to:

$$ a_1^* = b_1(a_2^*) $$
$$ a_2^* = b_2(a_1^*) $$
Using Best Response Functions to find Nash Eq.

- **Proposition**: The action profile a^* is a Nash equilibrium if and only if every player’s action is a best response to the other players’ actions:

 $$ a^*_i \in B_i(a^*_{-i}) \quad \text{for every player } i \quad (1) $$

- If the best-response function is *single-valued*:
 - Let $b_i(a^*_i)$ be the **single member** of $B_i(a^*_{-i})$, i.e. $B_i(a^*_{-i}) = \{b_i(a^*_i)\}$. Then condition 1 is equivalent to:

 $$ a^*_i = b_i(a^*_i) \quad \text{for every player } i \quad (2) $$
Proposition: The action profile \(a^* \) is a Nash equilibrium if and only if every player’s action is a best response to the other players’ actions:

\[
a^*_i \in B_i(a^*_{-i}) \quad \text{for every player } i
\]

If the best-response function is single-valued:

- Let \(b_i(a^*_i) \) be the single member of \(B_i(a^*_{-i}) \), i.e. \(B_i(a^*_{-i}) = \{ b_i(a^*_i) \} \). Then condition 1 is equivalent to:

\[
a^*_i = b_i(a^*_i) \quad \text{for every player } i
\]

If the best-response function is single-valued and there are 2 players, condition 1 is equivalent to:
Using Best Response Functions to find Nash Eq.

- **Proposition**: The action profile a^* is a Nash equilibrium if and only if every player’s action is a best response to the other players’ actions:

$$a_i^* \in B_i(a_{-i}^*) \text{ for every player } i$$ \hspace{1cm} (1)

- If the best-response function is *single-valued*:
 - Let $b_i(a_i^*)$ be the single member of $B_i(a_{-i}^*)$, i.e. $B_i(a_{-i}^*) = \{b_i(a_i^*)\}$. Then condition 1 is equivalent to:

$$a_i^* = b_i(a_{-i}^*) \text{ for every player } i$$ \hspace{1cm} (2)

- If the best-response function is single-valued and there are 2 players, condition 1 is equivalent to:

$$a_1^* = b_1(a_2^*)$$

$$a_2^* = b_2(a_1^*)$$
Finding Nash equilibrium with Best-Response functions

- We can use this to find Nash equilibria when the action space is continuous.
Finding Nash equilibrium with Best-Response functions

- We can use this to find Nash equilibria when the action space is continuous.
- Step 1: Calculate the best-response functions.
Finding Nash equilibrium with Best-Response functions

- We can use this to find Nash equilibria when the action space is continuous.
- Step 1: Calculate the best-response functions.
- Step 2: Find an action profile a^* that satisfies:
 \[
 a_i^* \in B_i(a_{-i}^*) \quad \text{for every player } i
 \]
We can use this to find Nash equilibria when the action space is continuous.

- Step 1: Calculate the best-response functions.
- Step 2: Find an action profile \(a^* \) that satisfies:

\[
a_i^* \in B_i(a_{-i}^*) \quad \text{for every player } i
\]

- Or, if every player's best-response function is single-valued, find a solution of the \(n \) equations (\(n \) is the number of players):
Finding Nash equilibrium with Best-Response functions

- We can use this to find Nash equilibria when the action space is continuous.
- Step 1: Calculate the best-response functions.
- Step 2: Find an action profile a^* that satisfies:
 \[a_i^* \in B_i(a^*_{-i}) \quad \text{for every player } i \]

- Or, if every player’s best-response function is single-valued, find a solution of the n equations (n is the number of players):
 \[a_i^* = b_i(a^*_{-i}) \quad \text{for every player } i \]
Example: synergistic relationship (37.2 in book)

- Two individuals.

\[\text{Payoff to Player } i: u_i(a_i) = a_i \cdot (c + a_j - a_i), \text{ where } c > 0 \]
Example: synergistic relationship (37.2 in book)

- Two individuals.
- Each decides how much effort to devote to relationship.

\[
\begin{align*}
 \text{Amount of effort } a_i \text{ is a non-negative real number (so the action space is infinite)} \\
 \text{Payoff to Player } i: u_i(a_i) &= a_i \cdot (c + a_j - a_i), \text{ where } c > 0 \text{ is a constant.}
\end{align*}
\]
Example: synergistic relationship (37.2 in book)

- Two individuals.
- Each decides how much effort to devote to relationship.
- Amount of effort a_i is a non-negative real number (so the action space is infinite)
Two individuals.
Each decides how much effort to devote to relationship.
Amount of effort a_i is a non-negative real number (so the action space is infinite)
Payoff to Player i: $u_i(a_i) = a_i \cdot (c + a_j - a_i)$, where $c > 0$ is a constant.
Finding the Nash Equilibrium

- Construct players’ best-response functions:

\[u_i(a_i) = a_i \cdot (c + a_j - a_i) \]

Given \(a_j \), this becomes a quadratic:

\[u_i(a_i) = a_i \cdot c + a_i \cdot a_j - a_i^2 \]

Best response to \(a_j \) is when this quadratic is maximized. Take the derivative and set to 0.

\[c + a_j - 2a_i = 0 \]

\[a_i = c + a_j \]

So, best response functions are:

\[b_1(a_2) = c + a_2 \]

\[b_2(a_1) = c + a_1 \]
Finding the Nash Equilibrium

- Construct players’ best-response functions:
- Player i’s payoff function: $u_i(a_i) = a_i \cdot (c + a_j - a_i)$
Finding the Nash Equilibrium

- Construct players’ best-response functions:
- Player i’s payoff function: $u_i(a_i) = a_i \cdot (c + a_j - a_i)$
- Given a_j, this becomes a quadratic: $u_i(a_i) = a_i \cdot c + a_i \cdot a_j - a_i^2$
Finding the Nash Equilibrium

- Construct players’ best-response functions:
- Player i’s payoff function: $u_i(a_i) = a_i \cdot (c + a_j - a_i)$
- Given a_j, this becomes a quadratic: $u_i(a_i) = a_i \cdot c + a_i \cdot a_j - a_i^2$
- Best response to a_j is when this quadratic is maximized. Take the derivative and set to 0.
Finding the Nash Equilibrium

- Construct players’ best-response functions:
- Player i’s payoff function: $u_i(a_i) = a_i \cdot (c + a_j - a_i)$
- Given a_j, this becomes a quadratic: $u_i(a_i) = a_i \cdot c + a_i \cdot a_j - a_i^2$
- Best response to a_j is when this quadratic is maximized. Take the derivative and set to 0.

\[c + a_j - 2a_i = 0 \]
Finding the Nash Equilibrium

- Construct players’ best-response functions:
- Player i’s payoff function: $u_i(a_i) = a_i \cdot (c + a_j - a_i)$
- Given a_j, this becomes a quadratic: $u_i(a_i) = a_i \cdot c + a_i \cdot a_j - a_i^2$
- Best response to a_j is when this quadratic is maximized. Take the derivative and set to 0.

\[c + a_j - 2a_i = 0 \]

\[\Rightarrow a_i = \frac{c + a_j}{2} \]
Finding the Nash Equilibrium

- Construct players’ best-response functions:
- Player i’s payoff function: $u_i(a_i) = a_i \cdot (c + a_j - a_i)$
- Given a_j, this becomes a quadratic: $u_i(a_i) = a_i \cdot c + a_i \cdot a_j - a_i^2$
- Best response to a_j is when this quadratic is maximized. Take the derivative and set to 0.

$$c + a_j - 2a_i = 0$$

$$\Rightarrow a_i = \frac{c + a_j}{2}$$

- So, best response functions are:
Finding the Nash Equilibrium

- Construct players’ best-response functions:
 - Player i’s payoff function: $u_i(a_i) = a_i \cdot (c + a_j - a_i)$
 - Given a_j, this becomes a quadratic: $u_i(a_i) = a_i \cdot c + a_i \cdot a_j - a_i^2$
 - Best response to a_j is when this quadratic is maximized. Take the derivative and set to 0.

\[
c + a_j - 2a_i = 0
\]

\[
\rightarrow a_i = \frac{c + a_j}{2}
\]

- So, best response functions are:
 - $b_1(a_2) = \frac{c + a_2}{2}$
 - $b_2(a_1) = \frac{c + a_1}{2}$
The pair \((a_1, a_2)\) is a Nash equilibrium if \(a_1 = b_1(a_2)\) and \(a_2 = b_2(a_1)\).
Finding the Nash Equilibrium

- The pair \((a_1, a_2)\) is a Nash equilibrium if \(a_1 = b_1(a_2)\) and \(a_2 = b_2(a_1)\).
- Solving the two equations...
Finding the Nash Equilibrium

- The pair \((a_1, a_2)\) is a Nash equilibrium if \(a_1 = b_1(a_2)\) and \(a_2 = b_2(a_1)\).
- Solving the two equations

\[
a_1 = \frac{c + a_2}{2}
\]
The pair \((a_1, a_2)\) is a Nash equilibrium if \(a_1 = b_1(a_2)\) and \(a_2 = b_2(a_1)\).

Solving the two equations

\[
a_1 = \frac{c + a_2}{2}
\]

\[
a_2 = \frac{c + a_1}{2}
\]
Finding the Nash Equilibrium

- The pair \((a_1, a_2)\) is a Nash equilibrium if \(a_1 = b_1(a_2)\) and \(a_2 = b_2(a_1)\).
- Solving the two equations

\[
a_1 = \frac{c + a_2}{2}
\]

\[
a_2 = \frac{c + a_1}{2}
\]

- gives a unique solution \((c, c)\).
Finding the Nash Equilibrium

- The pair \((a_1, a_2)\) is a Nash equilibrium if \(a_1 = b_1(a_2)\) and \(a_2 = b_2(a_1)\).
- Solving the two equations

\[
\begin{align*}
 a_1 &= \frac{c + a_2}{2} \\
 a_2 &= \frac{c + a_1}{2}
\end{align*}
\]

- gives a unique solution \((c, c)\).
- Therefore, this game has a unique Nash equilibrium:
\(a_1 = c, a_2 = c\).
The intersection of \(b_1(a_2) = \frac{c + a_2}{2} \) and \(b_2(a_1) = \frac{c + a_1}{2} \) is the Nash equilibrium.
A player's action is *strictly dominated* by another action if it gives a lower payoff, regardless of what other players do.

Definition: Player \(i \)'s action \(b_i \) strictly dominates action \(b'_i \) if
\[
u_i(b_i, a_{-i}) > u_i(b'_i, a_{-i})
\]
for every \(a_{-i} \).

We say action \(b'_i \) is strictly dominated.

A strictly dominated action cannot be a best response to any actions of the other players, because some other action exists that gives a higher payoff.

Therefore, a strictly dominated action is not played in any Nash equilibrium.
Dominated Actions

- A player's action is *strictly dominated* by another action if it gives a lower payoff, regardless of what other players do.

- **Definition**: Player i’s action b_i **strictly dominates** action b'_i if

 \[u_i(b_i, a_{-i}) > u_i(b'_i, a_{-i}) \quad \text{for every } a_{-i} \]
A player’s action is *strictly dominated* by another action if it gives a lower payoff, regardless of what other players do.

Definition: Player i’s action b_i strictly dominates action b'_i if

$$u_i(b_i, a_{-i}) > u_i(b'_i, a_{-i})$$

for every a_{-i}

We say action b'_i is *strictly dominated*.
Dominated Actions

- A player’s action is *strictly dominated* by another action if it gives a lower payoff, regardless of what other players do.
- **Definition**: Player i’s action b_i strictly dominates action b'_i if
 \[u_i(b_i, a_{-i}) > u_i(b'_i, a_{-i}) \text{ for every } a_{-i} \]

- We say action b'_i is *strictly dominated*.
- A strictly dominated action cannot be a best response to any actions of the other players, because some other action exists that gives a higher payoff.
Dominated Actions

- A player’s action is **strictly dominated** by another action if it gives a lower payoff, regardless of what other players do.

- **Definition**: Player i’s action b_i **strictly dominates** action b'_i if

$$u_i(b_i, a_{-i}) > u_i(b'_i, a_{-i}) \quad \text{for every } a_{-i}$$

- We say action b'_i is **strictly dominated**.

- A strictly dominated action cannot be a best response to any actions of the other players, because some other action exists that gives a higher payoff.

- Therefore, a strictly dominated action is not played in any Nash equilibrium.
For both players, F strictly dominates Q: regardless of the other player’s action, F gives a higher payoff.
Prisoner’s Dilemma

For both players, F strictly dominates Q: regardless of the other player’s action, F gives a higher payoff.

This eliminates all outcomes where Q is played as Nash equilibria.
Neither action is strictly dominated.
Next Week

- Please read the rest of Chapter 2, and Chapter 3.1-3.3.
- If you don’t have the textbook, check the course website for information on how to get the textbook chapters.